AD/A-002 858

A STRUCTURAL WEIGHT ESTIMATION PROGRAM (SWEEP) FOR AIRCRAFT. VOLUME VAIR INDUCTION SYSTEM AND LANDING GEAR MODULES. PART 2: LANDING GEAR MODULE

D. Chaloff, et al

Rockwell International Corporation

Prepared for:

Aeronautical Systems Division

June 1974

DISTRIBUTED BY:

Best Available Copy

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FOR REPORT DOCUMENTATION PAGE T. BEPORY MUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER ASD/XR 74-10 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume V Air Induction System and 6. PERFORMING ORG. REPORT NUMBER Landing Gear Modules 7. AUTHOR(e) CONTRACT OR GRANT NUMBER(+) D. Chaloff, R. Hiyama F33615-71-C-1922 C. Martindale 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Rockwell International Corp, L.A. Aircraft Div Los Angeles International Airport FX2826-71-01876/C093 Los Angeles, California 90009 IZ. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS Deputy for Development Planning June 1974 Air Force Systems Command 13. NUMBER OF PAGES 180 Wright-Patterson Air Force Base, Ohio 645 14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 18. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION! DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22131

18 SUPPLEMENTARY NOTES

weight estimation, structural weights, integrated computer programs, preliminary weight estimation, first-order weight estimations, aircraft structure weights, aircraft structural weight optimization, flutter optimization program, structural synthesis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three computer programs were written with the objective of predicting the structural weight of aircraft through analytical methods. The first program, the structural weight estimation program (SWEEP), is a completely integrated program including routines for airloads, loads spectra, skin temperatures, material properties, flutter stiffness requirements, fatigue life, structural sizing, and for weight estimation of each of the major aircraft structural components. The program produces first-order weight estimates

DD TORM 1473 EDITION OF THOU 45 IS OBSOLETE,

and indicates trends when parameters are varied. Fighters, bombers, and cargo aircraft can be analyzed by the program. The program operates within 100,000 octal units on the Control Data Corporation 6600 computer. Two stand-alone programs operating within 100,000 octal units were also developed to provide optional data sources for SWEEP. These include (1) the flexible airloads program to assess the effects of flexibility on lifting surface airloads, and (2) the flutter optimization program to optimize the stiffness distribution required for lifting surface flutter prevention.

The final report is composed of 11 volumes. This volume (volume V) contains the methodology program description, and user's information for the air induction system and landing gear modules of SWEEP.

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Publication of this technical report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

JAMES H. HALL, Colonel, USAF Deputy for Development Planning

TABLE OF CONTENTS

Section		Page
	INTRODUCTION TO VOLUME V	14
	Part 1 - Air Induction System Module	15
I	INTRODUCTION AND SUMMARY	16
	Program Objectives Summary of Analysis Capabilities and Limitations	16 16
	Air Induction System Structure Weight Estimation	17
	Inlet Pressure and Temperature	17
	Material Properties	21
	Inlet Ducts	21
	Variable-Geometry Ramps	21
	Nacelle and Engine Section Weight Estimation	22
	Module Operation	22
	Module Input	23
	Module Output	23
	. Nauto output	20
	Module Structure	27
11	METHODS AND FORMULATIONS	30
	General Discussion	30
	Inlet Coordinate System	30
	Flight Profile and Design Pressures	33
	Speed-Altitude Profile	33
	Ambient Temperature and Pressure	35
	Dynamic Pressure	36
	Inlet Duct Pressures and Temperatures	37
	Total Temperature and Pressure	37
	Static Pressure	38
	Hammershock Pressure	39
	Design Pressures	42
	Material Properties	42

Section		Page
	Inlet Ducts and Diffusers	50
	Duct Geometry	51
	Duct Panel Synthesis	58
	Strength and Deflection Equations	58
	Allowable Stress	- 61
	Allowable Deflection	61
	Duct Weight	62
	Duct Frame Synthesis	62
	Frame Geometry	62
	Unit Internal Frame Loads	65
	Frame Synthesis and Weight	67
	Two-Dimensional Variable-Geometry Ramps	71
	Ramp Design Pressure	72
	Ramp Synthesis Methods and Assumptions	73
	Panel Synthesis	76
	Hinge and Actuator Beam Synthesis	79
	Minimum Weight	81
	Two-Ramp System	83
	Ramp Structure Geometry	83
	Resolution of Forces	86
	Ramp 1 Weight	88
	Ramp 2 Weight	89
	Three-Ramp System	90
	Ramp Structure Geometry	90
	Resolution of Forces	94
	Ramp 1 Weight	97
	Ramp 2 Weight	98
	Ramp 3 Weight	99
	Four-Ramp System	99
	Ramp Structure Geometry	103
	Resolution of Forces	104
	Ramo 1 Weight	109

Section		Page
	Ramp 2 Weight	110
	Ramp 3 Weight	111
	Ramp 4 Weight	113
	Three-Dimensional Axial Flow Systems (Spikes) Nacelle Shell Structure	114 115
	Nacelle Geometry	115
	Nacelle Synthesis	117
	Local Panel Flutter	118
	Nacelle Shell Weight	122
	Miscellaneous Structure Weight	123
	Engine Mounts	124
	Auxiliary Inlet and Duct Bypass Doors	124
	Engine Removal Doors	124
	Miscellaneous Doors	125
	Firewall	125
	Exterior Finish	125
	Engine Compartment Shroud	125
	Pylons and Nacelle Support Fittings	126
III	PROGRAM DESCRIPTION	128
	General Discussion	128
	Logic Flow	128
	General Maps	128
	Common	132
	Labeled Common	132
	Mass Storage File Records	132
	Subroutine Descriptions	225
	Program AISMN	225
	General Description	225
	Arrays and Variables Used	225
	Arrays and Variables Calculated	225
	Labeled Common Arrays	227
	Mass Storage File Records	227
	Error Messages	227
	Subroutine SPAL	227

Section	Page
Subroutine TEMPR	231
Subroutine MCNTL1	232
Subroutine MATLF1	239
Subroutine MATLP2	240
Subroutine DSGNP	241
Subroutine PRECRT	244
Subroutine RAMPS	247
Subroutine SPIKE	252
Subroutine DUCTS	257
Subroutine DCTGEO	259
Subroutine FRMND3	264
Subroutine FRMELD	265
Subroutine DUCPNL	268
Subroutine DUCFRM	270
Subroutine DUCWET	272
Subroutine NACELE	274
Subroutine NCLGEO	278
Subroutine MISCOM	280
Subroutine PYLONS	282
Subroutine SUMARY	283
IV REFERENCES	285
APPENDIX A AIR INDUCTION SYSTEM MODULE FLOW CHARTS AND FORTRAN LISTS	286
Flow Chart Usage	287
Table of Contents for Autoflow Chart Set	291
Program Flow Charts of Air Induction System Module	305
Program AISMN	306
Subroutine DCTGEO	312
Subroutine DSGNP	318
Subroutine DUCFRM	324
Subroutine DUCPNL	328
Subroutine DUCTS	332
Subroutine DUCWET	337
Subroutine FRMELD	341
Subroutine FRMND3	345
Subroutine MATLF1	349
Subroutine MATLP2	353
Subroutine MCNTL1	356
Subroutine MISCOM	361
Subroutine NACELE	365

Section	Page
Subroutine NCLGEO	373
Subroutine PRECRT	378
Subroutine PYLONS	381
Subroutine RAMPS	385
Subroutine SPAL	398
Subroutine SPIKE	404
Subroutine SUMARY	407
Subroutine TEMPR	413
FORTRAN Listing of Air Induction System	Module 420
Program AISMN	421
Subroutine DCTGEO	423
Subroutine DSGNP	425
Subroutine DUCFRM	427
Subroutine DUCPNL	429
Subroutine DUCTS	430
Subroutine DUCWET	432
Subroutine FRMELD	434
Subroutine FRMND3	435
Subroutine MATLF1	437
Subroutine MATLP2	439
Subroutine MCNTL1	440
Subroutine MISCOM	442
Subroutine NACELE	444
Subroutine NCLGEO	447
Subroutine PRECRT	448
Subroutine PYLONS	449
Subroutine RAMPS	451
Subroutine SPAL	460
Subroutine SPIKE	462
Subroutine SUMARY Subroutine TEMPR	463 466
Part 2 - Landing Gear Module	481
I INTRODUCTION AND SUMMARY	482
Module Structure	482
Design Parameters	482
Landing Gear Loads	483
Landing Gear Weights	484

Section	Page
Outer Cylinder	485
Inner Cylinder (Piston)	486
Axle	486
Bogie	487
Drag and Side Struts	488
0i1	489
Tires, Tubes, and Wheels	489
Brakes	489
Weight Coefficients	489
Module Operation	489
Mass Storage	489
Permanent Data	490
Variable Input Data	491
Variable Input Data Options	493
Output	494
Comments, Warning Messages, and Error Messages	494
II METHODS AND FORMULATIONS	495
General Discussion	495
Optional Input Variables	501
The second secon	
Landing Speed	501
Load Factors	502
Piston Diameters	503
Wheel, Tire, and Tube Weights	505
Brake Weight	506
Rotating Inertia of Wheel Assembly	506
Axial and Normal Strut Loads	507
Landing and Ground Loads	509
Two-Point Landing	509
Spinup	511
Springback	513
Braked Roll	513
Drift Landing	514
Unsymmetrical Braking	514
Towing	515
Turning	516
Р	0.20

Section		Page
	Strut Design Loads	517
	Strut Synthesis	526
	Deflection Analysis	532
	Inner and Outer Cylinder Weight	534
	Axle Weight	535
	Bogie Weight	537
	Side Strut and Drag Strut Weight	538
	Oil Weight	539
	Miscellaneous Weight	539
	Total Weight	540
	Tail Wheel Weight	541
	Center of Gravity	541
III	PROGRAM DESCRIPTION	542
	General Discussion	542
	Mass Storage Files	544
	Input Data	544
	Labeled Common Blocks	551
	Subroutine Descriptions	553
	Program LANDGR	553
	Subroutine LOADS	559
	Subroutine LG3P	560
	Subroutine RMOR	561
	Subroutine LGEAR	563
	Subroutine LGWT	568
APPENDIX	B LANDING GEAR MODULE FLOW CHARTS AND FORTRAN LISTS	580
	Table of Contents for Autoflow Chart Set	581
	Program Flow Charts of Landing Gear Module	587
	Program LANDGR	588
	Subroutine RMOR	592
	Subroutine LGEAR	594
	Subroutine LGWT	606
	Subroutine LG3P	623
	Subroutine LOADS	626

Section		Page
	FORTRAN Listing of Landing Gear Module	628
	Program LANDGR	629
	Subroutine BMOR	630
	Subroutine LGEAR	630
	Subroutine LGWT	636
	Subroutine LG3P	644
	Subroutine LOADS	645

LIST OF ILLUSTRATIONS

Part 1 - Air Induction System Module

Figure	Title	Page
1	Detail Weight Report Format for Propulsion Group	18
2	Detail Weight Report Format for Engine Section or Nacelle	
	Group	
3	Sample Output of Weight Summary and Balance Results	24
4	Sample Output of Air Induction System Structure Weight	
	Summary	2 5
5	Sample Output of Engine Section or Nacelle Group Weight	
	Summary	26
6	Air Induction System Module Functional Flow Diagram	
7	Speed-Altitude Profile Points	
8	Throat Static Pressure Ratio	39
9	Hammershock Pressure Ratio	41
10	Hammershock Attenuation at Throat	
11	Stress-Strain Curve and Curve Fit Control Points	45
12	Material Stress-Strain Curve Evaluation for Elastic and	
	Plastic Properties	46
13	Programmed Shapes and Correction Factors	
14	Diaphragm Stresses and Deflections	
15	Ramp Structural Representation	74
16	Typical Two-Ramp System	84
17	Typical Three-Ramp System	91
18	Typical Four-Ramp System	100
19	Panel Flutter Mach Number Correction Factor	120
20	Panel Flutter Parameter Versus Aspect Ratio	121
21	Air Induction System Module Subroutine Flow Diagram,	
	Overlay (7,0)	129
22	Logic Flow Diagram for Air Induction System Module	131
23	Sample Output From AISMN of Air Induction System Design	
	Data (IP(61))	22 6
24	Sample Output From SPAL of Speed-Altitude Profile	
	Pata (IP(62))	230
25	Sample Output From MATLP2 of Duct Material Properties	
	Data (IP(63))	23 5
26	Sample Output From MATLP2 of Ramp Material Properties	
	Data (IP(63))	236
27	Sample Output From MATLP2 of Nacclle Material Properties	
	Data (IP(63))	237
28		
	Properties Data (IP(64))	238

Figure	Title	Page
29	Sample Output From DSGNP of Inlet Pressure Data (IP(65))	. 243
30	Sample Output From PRECRT of Ramp Design Criteria Data (IP(66))	
31	Sample Output From RAMPS of Design Constants, Reaction Forces, and Detail Weights (IP(67))	
32	Sample Output From DUCTS of Unit Internal Frame Loads and Frame Sizing Data (IP(69))	. 260
33	Sample Output From DUCTS of Duct Detail Geometry and Weight Data (IP(69))	. 261
34	Sample Output From FRMELD of Unit Redundants and Duct Frame Geometry (IP(68))	. 267
35	Sample Output From NACELE of Nacelle Detail Geometry and Weight Data (IP(70))	. 277
	Part 2 - Landing Gear Module	
Figure	Title	Page
36	Load conditions analyzed in subroutine LGEAR	. 484
37	Inner cylinder and outer cylinder geometry	
38	Axle geometry	
39	Bogie geometry	
40	Drag strut or side strut geometry	
41	Geometry representation for fore-aft bending moment derivation	
42	Geometry representation for lateral bending moment derivation	
43	Drift landing normal loads	
44	Lateral bending moment for drift landing when the eccentricity is negative and greater than one-tenth the	
45	length to the ground	
46	length to the ground	
47	eccentricity is positive	. 527
48	Bending modulus of rupture	. 530
49	Subroutine flow diagram	. 542
50	Functional flow diagram	-
51	Sign convention for main gear eccentricity	. 549
52	Main gear strut angles	. 550
53	Nose gear strut angles	-
54 54	Sample output from LANDGR of variable landing gear data	•
55	Sample output from LGEAR of landing gear loads	
56	Sample output from LGWT of nose gear weight summary	560
57	Sample output from LGWT of main gear weight summary	570

LIST OF TABLES

Part 1 - Air Induction System Module

Tables	Title	Page
1	Functional Subroutine Grouping (AIS)	
2	Material Library Data	49
3	Basic Ramp Geometry and Design Data	75
4	Ramp Structure Minimum Gages and Densities	8 2
5	Two-Ramp System Variables	8 5
6	Three-Ramp System Variables	92
7	Four-Ramp System Variables	
8	Miscellaneous Structure Component Weights	
9	Common Arrangement	
10	Common Region Variable List	136
11	D Array Variables	
12	DATD Duct Input Data Array Variables	171
13	DATM Array Variables	173
14	DATN Nacelle Data Array Variables	175
15	DATR and DR Array Variables	177
16	DATS Engine Section and Air Induction System Input Data Array Variables	
17	EQU Array Variables	
18	F Array Ramp Titles	
19	ND Array Variables	
20	SUMM Array Variables	
21	TM Array Variables	202
22	TMD Array Variables	202
23	TMS Array Variables	
24	TOT Array Variables	
25	TT Array Variables	
26	FDAT Array Variables (FDATT Block)	
20 27		
28	IP Array Variables (IPRINT Block)	
20	Part 2 - Landing Gear Module	224
	Tate 2 Manual Good Floods	
[able	Title	Page
29	Landing Gear Design Data from Data Management Module	492
30	List of Symbols in Methods and Formulations	495
31	Input Array D - Permanent Data	544
32	Input Array D - Variable Data	546
33	FDAT Array Variables	552
34	Array FLOADS in LGDATA Block	554
35	Wheel, Tire, Tube, and Brake Weights in LGDATA Block	557

PART 2 LANDING GEAR MODULE

Section I

INTRODUCTION AND SUMMARY

MODULE STRUCTURE

The landing gear module is written in FORTRAN IV extended for the CDC 16600 computer. It is contained in overlay (6,0), which is considerably smaller than the 50,000-octal core limit of SWEEP.

The landing gear module consists of a main program, LANDGR, and five subroutines - LGEAR, LGWT, LOADS, LG3P, and BMOR:

- LANDGR Reads input data
- LGEAR Determines drag, side, and vertical loads on wheels
- LOADS Determines axial and normal loads on strut
- LGWT Computes weight of landing gear
- BMOR Determines bending modulus of rupture and torsion modulus of rupture
- LG3P Three-point interpolation routine

DESIGN PARAMETERS

The design parameters which are included in the landing gear analysis are:

- Takeoff and landing weights of aircraft
- Wing area
- Center of gravity of aircraft at takeoff and landing weights
- Distance from center of gravity to ground
- Landing speed at takeoff and landing weights
- Sink speed at takeoff and landing weights

Box for all god had

- Load factor at takeoff and landing weights
- Coefficient of lift at takeoff and landing weights
- Material properties (density, modulus of elasticity, ultimate tensile strength, yield compression strength, Poisson's ratio)
- Fuselage station of main and nose gears
- Distance between main gear struts
- Length of main and nose gear struts
- Stroke of main and nose gears
- Piston diameter of main and nose gears
- Eccentricity of main and nose gear wheels
- Number of wheels per strut for main and nose gears
- Strut angles (fore-aft and lateral) of main gear
- Strut angle (fore-aft) of nose gear
- Dimensions of main and nose gear tires

LANDING GEAR LOADS

The landing gear loads analysis in subroutine LGEAR follows the procedure outlined in MIL-A-008862A (USAF).(1)

The axial and normal loads on the strut are determined for eight load conditions. These eight conditions are shown in Figure 36.

The loads for the two-point landing, spin-up, spring-back, and unsymmetrical braking load conditions are determined at both the takeoff and landing weights for both the main and nose gears.

The loads for the braked roll and drift landing conditions are determined at both the takeoff and landing weights for the main gear only.

^{1.} Military Specification MIL-A-008862A (USAF), "Airplane Strength and Rigidity, Landing and Ground Loads," 31 March 1971.

	Main	Main Gear Nose Ge		Gear	
	T.O. wt	Ldg wt	T.O. wt	Ldg wt	
Two-point landing	х	х	х	х	
Spinup	x	х	X	х	
Springback	х	x	х	х	
Braked roll	х	X			
Drift Landing	x	X	•		
Unsymmetrical Braking	x	X	x	х	
Towing	х		Х		
Turning	х		X		

Figure 36. Load conditions analyzed in subroutine LGEAR.

The loads for the towing and turning conditions are determined at the takeoff weight only for both the main and nose gears.

The program user may bypass the loads analysis and specify the design loads in the variable input data.

LANDING GEAR WEIGHTS

The weight of the landing gear is determined by analytical methods for as much of the gear as is practicable. A statistical method is then used to compute the 'miscellaneous weight' which will produce a total weight consistent with the known weights of many past landing gears.

The District of the

The parts of the landing gear which are treated analytically are listed in the following paragraphs, along with a brief summary of the method used.

OUTER CYLINDER

The geometry of the outer cylinder is shown in Figure 37. The weight is determined by calculating the areas at sections 1, 2, and 3, which are at the top, midpoint, and bottom of the outer cylinder. The area at each section is calculated by searching for the value of the ratio of outside diameter to wall thickness for which the geometric area equals the area required for strength.

Figure 37. Inner cylinder and outer cylinder geometry.

INNER CYLINDER (PISTON)

The geometry of the inner cylinder is also shown in Figure 37. The inner cylinder has a constant outside diameter, the piston diameter, which is either given in the input data or calculated as a function of the static load. The inner cylinder extends from the axle to section 2, the midpoint of the outer cylinder. The area of the inner cylinder at section 4 is calculated in the same manner as the areas of the outer cylinder. The weight of the inner cylinder is then calculated by using the area at section 4 as the constant area from the axle to section 3, and using an area based on an assumed diameter to wall thickness ratio as the area between sections 3 and 2.

AXLE

The geometry of the axle is shown in Figure 38. The length of the axle is the width of the tire plus one-half the inner cylinder (piston) diameter.

Figure 38. Axle geometry.

The same

The bending and torsion moments on the axle are determined by assuming that the gross weight of the aircraft is divided evenly among the total number of main gear wheels, or that the static load on the nose gear is divided evenly among the nose gear wheels, but that one tire is flat when there are two wheels on a strut, and that two tires on one strut are flat when there are four wheels on a strut.

The diameter of the axle at the side of the piston is determined, and the weight is calculated by using this area as the constant diameter of the axle.

The axle is a solid cylinder, but the bending modulus of rupture and the torsion modulus of rupture used in the calculation of the diameter are based on a diameter-to-wall-thickness ratio equal to 10.

BOGIE

The geometry of the bogie is shown in Figure 39. The length of the bogie is equal to the piston diameter plus 1.1 times the outside diameter of the tires.

Figure 39. Bogie geometry.

The weight of the bogie is calculated only when there are four tires per strut on the main gear. The bending and torsion moments on the bogie are determined by assuming that both tires on one axle are flat. The area at the midpoint of the bogie length is calculated from the moments and an assumed value of the ratio of outside diameter to cylinder wall thickness. The weight of the bogie is calculated by using the area at the midpoint as the constant area of the bogie.

DRAG AND SIDE STRUTS

The geometry of the drag strut or the side strut is shown in Figure 40. The drag and side struts are assumed to be solid; therefore, the area is the load divided by the compression yield strength.

Figure 40. Drag strut or side strut geometry.

78

The normal load, NL, which determines the weight of the side strut is the larger of the normal loads from the drift landing and turning conditions. The normal load which determines the weight of the drag strut is the largest load from the six load conditions which act in the fore-aft direction - two-point landing, spinup, springback, braked roll, unsymmetrical braking, and towing.

OIL

The weight of the oil is a function of the stroke, the piston diameter, and an assumed oil density.

TIRES, TUBES, AND WHEELS

The weight of the tires, tubes and wheels is calculated from the diameter and width of the tires.

BRAKES

The weight of the brakes is a function of the weight of the aircraft, the landing speed, and an assumed ratio of pounds of brakes to foot-pounds of kinetic energy.

WEIGHT COEFFICIENTS

Coefficients may be applied to the calculated weights of the inner cylinder, outer cylinder, bogie drag strut, and side strut. Coefficients may also be applied to the total weight, including the calculated miscellaneous weight, of either the main gear or nose gear.

These coefficients can be used to account for configurations which are not similar to the simplified landing gear design assumed in this program.

A fixed weight may also be input to account for any weight item not included in this program.

MODULE OPERATION

MASS STORAGE

The input data to the landing gear module are contained in one data array with 116 locations. This array is stored in mass storage file record 25.

Mass storage file record 25 is read in LANDGR. No mass storage file records are written in the landing gear program.

PERMANENT DATA

The first 45 locations in the input data array are permanent data, and are read from the permanent data file, TAPE7, in the first case of each job. Table 31 lists the variables in these permanent data and the values which are stored in the permanent data file.

These permanent data values may be changed by reading new data into these locations when the variable input data for each case are read. The new value will remain in the input data for each following case in the job, but does not change the value stored in the permanent data file.

Some of the permanent data values which the program user may want to change, in order to better approximate a specific landing gear design, are as follows (refer to Table 31 for a complete list of permanent data:

- 1. The ultimate-to-limit-load-factor ratio (1.5 now assumed in the permanent data file)
- 2. The number of main gear struts (two now assumed)
- 3. The fraction of energy absorbed by the strut (0.1 now assumed)
- 4. The pounds of brake weight per foot-pound of kinetic energy $(0.408 \times 10^{-5} \text{ lb/ft-lb now assumed})$
- 5. The density of oil (0.03 lb/in. 3 now assumed)
- 6. The values of diameter to cylinder wall thickness for the axle, bogie, and upper portion of the inner cylinder (10, 20, and 50, respectively, now assumed)
- 7. The ratio of the nose gear piston diameter to the main gear piston diameter, used, when the nose gear piston diameter is not given in the input data (0.6 now assumed).
- 8. The stroke coefficients, used to determine the "effective stroke" of the main and nose gears at takeoff and landing weights (1.0 now assumed)

The State State of the State of

- 9. The fraction of the strut length from the axle to each of the four sections at which the area is calculated (1.0, 0.6, 0.2, and 0.12 now assumed)
- 10. The miscellaneous weight factors for the main and nose gears

VARIABLE INPUT DATA

The variable input data are contained in locations 46 through 116 of the landing gear input data. These variable input data are described in Table 32. The variable input data in locations 46 through 116, along with the changes, if any, to the permanent data in locations 1 through 45, are placed in the SWEEP input data deck behind an identification card containing "LG" in columns 1 and 2.

The landing gear module, overlay (6,0), may be run as a stand-alone program. In this case, only the data read module the landing gear module, and, if wanted, the final output module will be called.

All of the data required for the landing gear module must be included in the landing gear data deck when the module is run in a stand-alone mode. However, when the data management module is also executed (or has been executed in a previous case in this job), the data in 17 locations of the landing gear variable data may be omitted. These locations are listed in Table 29.

The data in the 17 locations listed in Table 29 are also included in the general input data, which must be input before the data management module can be executed. Location 46, which contains the takeoff weight, is used to indicate that these data values are to be transferred to the landing gear data. The value in location 46 is stored in location 24 of array XMISC, which is in labeled common block/MISC/. When this value is 0, subroutine DLNDGR in the data management module will read mass storage record 25. The data listed in Table 29 will be placed in the landing gear data array, and the revised record 25 will be written in the mass storage file.

Note that values will be placed in all of the 17 locations listed in Table 29 when the value in location 46 is 0, so that any value input in one of the other 16 locations in the landing gear input data would be replaced.

TABLE 29. LANDING GEAR DESIGN DATA FROM DATA MANAGEMENT MODULE

Loc	Description
46	Takeoff weight, 1b
47	Landing weight, 1b
48	Aborted takeoff Aweight, 1b
49	Fuselage station of CG of aircraft at takeoff, in.
50	Fuselage station of CG of aircraft at landing, in.
51	Distance from aircraft CG to ground, in.
52	Fuselage station of main gear, in.
53	Fuselage station of nose gear (or tail wheel), in.
54	Distance between main gear struts, in.
72	Axle to trunnion length of main gear strut with piston extended, in.
73	Stroke of main gear, in.
81	Axle to trunnion length of nose gear with piston extended, in.
82	Stroke of nose gear, in.
89	Sink speed at takeoff weight, ft/sec
90	Sink speed at landing weight, ft/sec
91	Landing speed at takeoff weight, ft/sec
92	Landing speed at landing weight, ft/sec

Con a Million of the Control of the

Variable Input Data Options

The program user has several options when filling out the landing gear variable data. These options are summarized here, and are described in greater detail in Section II and in the notes following Table 32.

- 1. The calculation of the landing gear loads may be bypassed. In this case, the program user must specify the design loads in the input data.
- 2. The auxiliary gear may be a tail wheel instead of a nose gear. The tail wheel weight is determined by a single statistical equation.
- 3. The piston diameter may be input, or the program may compute the piston diameter from the static load on the strut.
- 4. The landing speeds may be input, or the program may compute the landing speeds from the coefficients of lift, the wing area, and the takeoff and landing weights.
- 5. The load factors may be input, or the program may compute the load factors from the strokes, the sink speeds, the wing lift coefficient, and the tire diameter.
- 6. The wheel, tire, and tube weights may be input, or they may be computed by the program from the tire dimensions.
- 7. The brake weight may be input, or the program may compute the brake weight from the takeoff weight and the landing speed.
- 8. The inertia of the main gear wheels, tires, tubes, and brakes may be input, or it may be computed by the program from the wheel, tire, tube, and brake weights and the tire dimensions.
- 9. The effect of the deflections (fore-aft, lateral, and angular) of the strut may be included or may be omitted in the calculations of the weight of the inner and outer cylinders. If there are no deflections (and the eccentricity of the wheels is 0), the axial load on the strut has no moment arm, and all the bending moment on the strut comes from the normal load.

The program first computes the weight of the inner and outer cylinders with no deflections on the strut. If the deflections are not to be included, this completes the analysis. If the effect of the deflection is to be included, the deflections are determined and

the weights are recalculated with the increased moment resulting from the deflection. This loop continues for a maximum of six passes, or until the difference between the areas calculated at section 2, Figure 37, for two successive passes is less than a given tolerance.

OUTPUT

Program LANDGR and subroutine LGEAR will produce printed output if the appropriate print indicator is turned on. Program LANDGR will print (on one page) the variable input data in locations 46 through 116. Subroutine LGEAR will print (on one page) the landing gear loads.

The weight summary, design data, deflections, and CG data for the main gear (one page) and the nose gear (one page) are always printed in subroutine LGWT.

Comments, Warning Messages, and Error Messages

There are no warning messages or error messages printed in the landing gear program.

The only comment printed is a reminder to the program user that if the design load conditions indicators are all 0, this means that the loads were not computed but were supplied by the user in the input data.

Section II

METHODS AND FORMULATIONS

GENERAL DISCUSSION

An analytical approach to strut weight estimation which is applicable to both main and nose gears is used. This approach idealizes the strut as a cantilevered member designed to the spectrum of ground loads. Wheels, brakes, tires, and tube weights are either user input or calculated by the program. Statistical equations are used to calculate these components.

Specific design data development and weight calculation functions are divided into separate routines which are called by the landing gear weight estimation module control program LANDGR. Methods employed are described herein in the order that they are used in the program. Table 30 is a list of symbols that are used in the formulations that follow. Subscript I in this table is used to represent the four strut sections, Figure 37.

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS

Symbol	Description	Units
AA A ACM A _L A _{TO} AG AL AL ALOAD	Scratch variable Distance from CG to main gear, either A _{TO} or A _L Scratch variable Distance from CG at landing to main gear Distance from CG at takeoff to main gear Geometric area for assumed value of DOT Axial load on strut at this load condition Axial load on strut	in. in. in. in. 2 1b 1b
AL _{SB}	Axial load on either main or nose gear strut at either takeoff or landing weight for springback condition Angle between resultant load and strut	lb radians
$AREA_{I}$	Maximum of areas computed at section I for each load condition	in. ²
AREAC	Final area of cylinder section for load condition	in. ²
AS	Area required for strength for assumed value of DOT	in. ²
AXLGTH	Length of axle	in.

State of the state

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol	Description	Units
AXL0AD	Total load on axles for either main or nose gear	1b
A1	Fore-aft angle of strut	radians
A2	Lateral angle of strut	radians
BB	Scratch variable	
В	Distance from CG to nose gear, either \mathtt{B}_{T0} or \mathtt{B}_{L}	in.
\mathtt{B}_{L}	Distance from CG at landing to nose gear	in.
\mathtt{B}_{T0}	Distance from CG at takeoff to nose gear	in.
BCM	Scratch variable	
BD	Diameter of bogie	in.
BMAX	Bending moment on each axle	in1b
BMB	Bending moment at midpoint of bogie	inlb
BMRI	Resultant of fore-aft and lateral bending	
	moments at section I	inlb
BMRU	Bending modules of rupture	1b/in. ²
BMYI	Fore-aft bending moment at section I	in1b
BMYDZ	Fore-aft bending moment from condition which	
20-	produced max area at section 2	in1b
BMZI	Lateral bending moment at section I	inlb
BMZDZ	Lateral bending moment from condition which	
	produced max area at section 2	in1b
BOGL	Length of bogie	in.
BRAKES	Weight of brakes per aircraft	1b
BRC	Braked roll constant	•1
BWT	Weight of bogie	1 b
CG_{TO}	CG of aircraft at takeoff	in.
CGĜ	Distance from CG to ground	in.
CL _L	Coefficient of lift at landing weight	
CL_{TO}	Coefficient of lift at takeoff weight	
CL_W	Wing lift coefficient	
CRFA	Cosine of angle between resultant load and fore-aft direction	
CRL	Cosine of angle between resultant load and lateral direction	
CRV	Cosine of angle between resultant load and vertical	
CSFA	Cosine of angle between strut and fore-aft	
CSL	direction Cosine of angle between strut and lateral	
CSV	direction Cosine of angle between strut and vertical	

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol	Description	Units
DF	Drag (fore-aft) load on wheels	1b
DIAI	Outside diameter of cylinder at section I for	
•	assumed value of DOT	in.
DIAAX	Diameter of axle at side of piston	in.
DIADZ	Diameter of outer cylinder at section 2	in.
DIAM	Final outside diameter of cylinder for this	
	load condition	in.
DIST	Distance from main gear to nose gear	in.
DLLNGI	Length from ground to section I	in.
DMGS	Distance between main gear struts	in.
DOIL	Density of oil	1b/in.3
DOT	Diameter to wall thickness ratio	
DOTB	Assumed value of DOT for bogie	
D0T32	Assumed value of DOT of inner cylinder between sections 2 and 3	
DOVRT2	Diameter to wall thickness ratio at section 2	
DOVT	Final interpolated value of DOT for which R = 1	
DP	Piston diameter, either DPM or DPN	in.
DPM	Diameter of main gear piston	in.
DPN	Diameter of nose gear piston	in.
DSWT	Weight of main or nose gear side strut	1b.
DWT	Aborted takeoff delta weight	1b.
E	Modulus of elasticity	1b/in. ²
ECC	Eccentricity of wheels	in.
FCY	Compagaion viold strong	1b/in. ²
	Compression yield stress	10/111.
FEA FC	Fraction of energy absorbed by strut	
FS _M	Fuselage station of main gear	in.
FS _N	Fuselage station of nose gear	in.
FTOW	Tow load	1b
FVSU	Vertical spinup load at time TSU on either	
	main or nose gear at either takeoff or	11.
	landing weight	1b
g	Gravitational constant	ft/sec ²
G	Modulus of rigidity	$1b/in.^2$
GRWT	Gross weight, either $ ext{GRWT}_{ ext{T0}}$ or $ ext{GRWT}_{ ext{L}}$	1b
GRWTL	Landing gross weight	1b
	Takeoff gross weight	1b

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Symbol	Description	Units
I	Section index	4
12	Moment of inertia at section 2	in. ⁴
IW	Inertia of wheels, tires, tubes, and brakes, either IW_M or IW_N	slug-ft ²
IW _M	Inertia, per strut, of main gear wheels, tires, tubes, and brakes	slug-ft ²
IW_N	Inertia of nose gear wheels, tires, and tubes	slug-ft ²
LNGTMI	Length from axle to section I	in.
NG	Load factor, either NG $_{ m L}$ or NG $_{ m T0}$	
NG_L	Load factor at landing weight	
NG _{TO}	Load factor at takeoff weight	
NL	Normal load on the strut at this load condition	1b
NLSB	Normal load on either main or nose gear strut	
	at either takeoff or landing weight for	
	springback condition	1b
NLSU	Normal load on either main or nose gear strut	
	at either takeoff or landing weight for spinup condition	1b
	spinap condition	10
OD	Outside diameter of tires, either $0D_{N}$ or $0D_{N}$	in.
$0D_{M}$	Outside diameter of main gear tires	in.
$0D_N$	Outside diameter of nose gear tires	in.
PHIAX	Angular deflection at bottom of strut	radians
PHII	Angular deflection at section I	radians
PI	Ratio of circumference of circle to diameter	
51045	of circle	31
PL0AD	Normal load on strut	1b
R	Ratio of area required for strength to geo-	
	metric area	
RADPD	Scratch variable	
RB2	Ratio of deflections at bottom of strut to	
	deflections at section 2	
RH0	Density of material	lb/in. ³
RI2	Ratio of deflection at section I to deflection	
	at section 2	
RL0AD	Resultant load of drag, side, and vertical	
	loads on wheels	1b

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Symbol	Description	Units
S _W	Wing area	ft ²
SF	Side (lateral) load on wheels	1b
SS	Sink speed	ft/sec
SSL	Sink speed at landing weight	ft/sec
SS _{T0}	Sink speed at takeoff weight	ft/sec
SSWT	Weight of main or nose gear side strut	1b
STREFF	Effective stroke of main or nose gear at	10
SIRLIT	takeoff or landing weight	ft
CLIDO PAE		in.
STROKE	Stroke of either main or nose gear	1111.
STROKE _L	Effective stroke of main gear at landing	
ampora:	weight	ft
STROKE _{TO}	Effective stroke of main gear at takeoff	
	weight	ft
STRUTM	Number of main gear struts	
STRUTS	Number of struts, main, or nose gear (always 1 for nose gear)	
SW	Static load on each main gear strut	1b
T	Ultimate tensile strength divided by 1,000	1b/in. ² X 10 ⁻³
TAILWT	Weight of tail wheel	1b
TMAX	Torsion moment on each axle	in1b
TMB	Torsion moment at midpoint of bogie	in1b
TMOR	Torsion modulus of rupture	1b/in. ²
TOTAL	Total weight of either main or nose gear	1b
TOTCAL	Total calculated structure weight of either	
	main or nose gear	1b
TOTLNG	Length of strut, axle to trunion	in.
TOTSTW	Total calculated weight of either main or	
	nose gear	1b
TPMI T	Torsional bending moment at section I	in1b
TPHIDZ	Torsion moment from condition which produced	
TCU	max area at section 2	in1b
TSU	Time for wheel circumferential velocity to reach ground velocity	sec
TT_{M}	Weight per aircraft of main gear tubes and	
	tires	1b
TT_N	Weight per aircraft of nose gear tubes and	
	tires	1b
TV	Time to develop vertical reaction	sec

and a standard

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Symbol	Description	Units
VF	Vertical load on wheels	1b
VL	Landing speed, either VLTO or VLL	ft/sec
VL _L	Landing speed at landing weight	ft/sec
VL_{TO}	Landing speed at takeoff weight	ft/sec
VMX	Maximum vertical load, either $VMXMG_{T0}$, $VMXMG_{L}$, $VMXNG_{T0}$, or $VMXNG_{L}$	1b
VMXMG _L VMXMG _{TO}	Maximum vertical load on main gear at landing weight Maximum vertical load on main gear at takeoff	1b
	weight	1b
VMXNG _L VMXNG _{TO}	Maximum vertical load on nose gear at landing weight Maximum vertical load on nose gear at takeoff	1b
AMENOIO	weight	1b
w	Width of tires, either W_M or W_N	in.
W _M	Width of main gear tires	in.
W _N	Width of nose gear tires	in.
WCB	Weight coefficient for bogie	
WCDS	Weight coefficient for drag strut	
WCIC	Weight coefficient for inner cylinder	
WCMG	Weight coefficient for main gear	
WCNG	Weight coefficient for nose gear	
WCOC	Weight coefficient for outer cylinder	
WCSS	Weight coefficient for side strut	
WHEELM	Weight per aircraft of main gear wheels	1b
WHEELN	Weight per aircraft of nose gear wheels	1b
WMI	Input miscellaneous weight	1b
WS	Number of wheels per strut, either WS _M or WS _N	
WSM	Wheels per strut on main gear	
ws _N	Wheels per strut on nose gear	
WTAXL	Total weight of axles for either main or nose	
	gear	1b
WIMISC	Miscellaneous weight of either main or nose	
	gear	1b
WTIC	Weight of inner cylinder	1b
WTOC	Weight of outer cylinder	1b
WTOIL	Weight of oil for either main or nose gear	1b
WTTM	Weight per wheel of main gear wheel, tire,	
141	and tube	1b

TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONCL)

Symbol	Description	Units
witn	Weight per wheel of nose gear wheel, tire, and tube	1b
WITB	Weight wheels, tires, tubes, and brake for either main or nose gear	1ъ
YAX YI	Fore-aft deflection at bottom of strut Fore-aft deflection at section I	in. in.
z _{AX}	Lateral deflection at bottom of strut Lateral deflection at section I	in. in.

OPTIONAL INPUT VARIABLES

The landing speeds; the load factor; the piston diameters; the wheel, tire, and tube weights; the brake weight; and the inertia of the main gear wheels, tires, tubes, and brakes must be determined if these variables were not given in the input data.

LANDING SPEED

The landing speeds are calculated from the aircraft weights, the wing area, and the coefficients of lift.

$$VL_{T0} = 34.7776 \left(\frac{GRWT_{T0} - DWT}{S_W CL_{T0}} \right)^{0.5}$$
 (1)

$$VL_{L} = 34.7776 \left(\frac{GRWT_{L}}{S_{W}CL_{L}} \right)^{0.5}$$
 (2)

The Contract of the Contract o

VL_{TO} = landing speed at takeoff weight, ft/sec

VL_T = landing speed at landing weight, ft/sec

 $GRWT_{TO}$ = takeoff gross weight, 1b

GRWT, = landing gross weight, 1b

 $S_W = wing area, ft^2$

CL_TO = coefficient of lift at takeoff weight

CL_I = coefficient of lift at landing weight

DWT = aborted takeoff delta weight, 1b

LOAD FACTORS

The load factors are calculated from the strokes, the sink speeds, the wing lift coefficient, and the tire diameter.

$$NG_{T0} = \frac{(1-\text{FEA}) \left(\frac{SS_{T0}^{2}}{2g} + (1-\text{CL}_{W}) \left(0.98 \text{ STROKE}_{T0} + 0.08 \frac{0D_{M}}{12}\right)\right) + CL_{W}}{0.8 \text{ STROKE}_{T0}} + CL_{W} (3)$$

$$NG_{L} = \frac{(1-\text{FEA}) \left(\frac{SS_{L}^{2}}{2g} + (1-\text{CL}_{W}) \left(0.98 \text{ STROKE}_{L} + 0.08 \frac{0D_{M}}{12}\right)\right)}{0.8 \text{ STROKE}_{L}} + CL_{W}$$
(4)

NG_{TO} = load factor at takeoff weight

 NG_{I} = load factor at landing weight

FEA = fraction of energy absorbed by strut

 $SS_{TO} = sink speed at takeoff weight, ft/sec$

SS_I = sink speed at landing weight, ft/sec

CLw = wing lift coefficient

 $STROKE_{TO}$ = effective stroke of main gear at takeoff weight, ft

STROKE, = effective stroke of main gear at landing weight, ft

 OD_{M} = outside diameter of main gear tires, in.

g = gravitational constant (32.172), ft/sec²

PISTON DIAMETERS

The main gear piston diameter is a function of the static load.

$$SW = \frac{GRWT_{TO} \left| \frac{CG_{TO} - FS_{N}}{FS_{M} - FS_{N}} \right|}{STRUT_{M}}$$
 (5)

SW = static load on each main gear strut, 1b

 $CG_{TO} = CG$ of aircraft at take-off, in.

 FS_{xy} = fuselage station of nose gear, in.

FS, = fuselage station of main gear, in.

 $STRUT_{M}$ = number of main gear struts

If SW is greater than 77,295, the piston diameter is calculated by equation 6.

$$DP_{M} = \left(\frac{4}{15,000} \frac{SW}{PI}\right)^{0.5}$$
 (6)

 DP_{M} = diameter of main gear piston, in.

PI = ratio of circumference of circle to diameter of circle (3.1416)

If SW is less than 77,295, the scratch variables ACM, BCM, AA, BB, and RADPD are determined, and the piston diameter is then calculated by equation 7.

$$AA = -0.333 \left(\frac{BQM}{AQM}\right)^2$$

$$BB = \frac{2}{27} \left(\frac{BOM}{AOM} \right)^3 - \frac{4 SW}{PI AOM}$$

$$RADPD = \left(\frac{BB^2}{4} + \frac{AA^3}{27}\right)^{0.5}$$

$$DP_{M} = \left(\frac{-BB}{2} + RADPD\right)^{0.333} + \left(\frac{-BB}{2} - RADPD\right)^{0.333} - \frac{BQM}{3 ACM}$$
 (7)

The nose gear piston diameter is a function of the main gear piston diameter.

$$DP_{N} = 0.6 DP_{M}$$
 (8)

 DP_{N} = diameter of nose gear piston, in.

WHEEL, TIRE, AND TUBE WEIGHTS

The wheel, tire, and tube weights are calculated from the width and diameter of the wheels.

$$WTT_{M} = 0.425 \text{ } OD_{M} \text{ } W_{M} + 0.00023 \left(\frac{OD_{M} \text{ } W_{M}}{100} \right)^{7}$$
 (9)

$$WIT_{N} = 0.4 \text{ OD}_{N} W_{N} + 0.0000024 \left(\frac{0D_{N} W_{N}}{100} \right)^{8}$$
 (10)

 WTT_{M} = weight per wheel of main gear wheel, tire, and tube, 1b

 $WTT_{\rm M}$ = weight per wheel of nose gear wheel, tire, and tube, 1b

 $0D_{ki}$ = outside diameter of nose gear tires, in.

 W_{M} = width of main gear tires, in.

 W_N = width of nose gear tires, in.

45 percent of the wheel, tire, and tube weight is in the wheels; therefore, the total wheel, tire, and tube weights can be computed by equations 11 through 14.

$$WHEEL_{M} = 0.45 WS_{M} WTT_{M} 2$$
 (11)

$$TT_{m} = 1.222 \text{ WHEEL}_{M}$$
 (12)

$$WHEEL_{N} = 0.45 WS_{N} WIT_{N}$$
 (13)

$$TT_{N} = 1.222 \text{ WHEEL}_{N} \tag{14}$$

WHEEL, = weight per aircraft of main gear wheels, 1b

WHEEL, = weight per aircraft of nose gear wheels, 1b

TT_M = weight per aircraft of main gear tubes and tire, 1b

 TT_{N} = weight per aircraft of nose gear tubes and tires, 1b

 WS_M = wheels per strut on main gear

 WS_N = wheels per strut on nose gear

BRAKE WEIGHT

The brake weight is calculated from the takeoff weight and the landing speed. All the brake weight is in the main landing gear.

BRAKES =
$$0.010783 \text{ GRWT}_{T0} \text{ VL}_{T0}^2 0.00000408$$
 (15)

BRAKES = weight of brakes per aircraft, 1b

ROTATING INERTIA OF WHEEL ASSEMBLY

Polar moment of inertia for main gear wheels, tires, tubes, and brakes is calculated from the wheel, tire, tube, and brake weights and the tire dimensions.

$$IW_{M} = \frac{\left(\frac{OD_{M}}{12(2.52)}\right)^{2} TT_{M} + \left(\frac{OD_{M} - 1.818 W_{M}}{12(2.5)}\right)^{2} \left(0.65 \text{ BRAKES} + \text{WHEEL}_{M}\right)}{STRUT_{M} g}$$
(16)

 $^{\text{IW}}_{\text{M}}$ " inertia, per strut, of main gear wheels, tires, tubes, and brakes, slug-ft²

AXIAL AND NORMAL STRUT LOADS

The axial and normal loads on the strut at each load condition are determined by first finding the ground reactions on the wheels. The resulttant of these loads is then computed by equation 17.

RLOAD =
$$(VF^2 + DF^2 + SF^2)^{0.5}$$
 (17)

RLOAD = resultant load of the drag, side, and vertical loads on the wheels, 1b

VF = vertical load on the wheels, 1b

DF = drag (fore-aft) load on the wheels, 1b

SF = side (lateral) load on the wheels, lb

The direction cosines of the resultant load are then computed.

$$CRV = \frac{VF}{RLOAD} \tag{18}$$

$$CRFA = \frac{DF}{RLOAD}$$
 (19)

$$CRL = \frac{SF}{RLOAD}$$
 (20)

CRV = cosine of the angle between the resultant load and the vertical

CRFA = cosine of the angle between the resultant load and the fore-aft direction

CRL = cosine of the angle between the resultant load and the lateral direction

The direction cosines of the main gear strut are functions of the fore-aft and lateral angles in the input data.

CSV =
$$\cos \left[\tan^{-1} \left[\frac{1}{(\cos [A1])^2} + \frac{1}{(\cos [A2])^2} - 2 \right]^{0.5} \right]$$
 (21)

CSFA =
$$\cos \left[\tan^{-1} \left[\frac{1}{(\sin[A1])^2} + \frac{1}{(\cos[A2])^2} - 2 \right]^{0.5} \right]$$
 (22)

CSL =
$$\cos \left[\tan^{-1} \left[\frac{1}{(\cos [A1])^2} + \frac{1}{(\cos [A2])^2} - 2 \right]^{0.5} \right]$$
 (23)

CSV = cosine of the angle between the strut and the vertical

CSFA = cosine of the angle between the strut and the fore-aft direction

CSL = cosine of the angle between the strut and the lateral direction

Al = fore-aft angle of strut, radians

A2 = lateral angle of strut, radians

The lateral angle (A2) of the nose gear strut is always 0; therefore, equations 21 through 23 reduce to 24 through 26 for the nose gear.

$$CSV = \cos \left[A1\right] \tag{24}$$

$$CSFA = sin [A1]$$
 (25)

$$CSL = 0 (26)$$

The direction cosines of the resultant force and the direction cosines of the strut can then be combined to compute the angle between the resultant load and the strut.

ANG =
$$\cos^{-1}$$
 [CSV CRV + CSFA CRFA + CSL CRL] (27)

ANG = angle between the resultant load and the strut, radians

The axial and normal loads on the strut are then computed.

$$ALOAD = RLOAD \cos [ANG]$$
 (28)

$$PLOAD = RLOAD \sin[ANG]$$
 (29)

ALOAD = axial load on the strut, 1b

PLOAD = normal load on the strut, 1b

LANDING AND GROUND LOADS

The ground reactions on the wheels (VF, DF, and SF) for each load condition are determined in accordance with the procedure outline in MIL-A-008862A. (1) After the loads have been determined, the program then, except for the spring-back condition, uses the method described in equations 17 through 29 to find the axial and normal loads on the strut.

TWO-POINT LANDING

The vertical load on the wheels at the two-point landing condition is the maximum vertical load.

The maximum vertical loads on the main gear are computed by equations 30 and 31.

$$VMXMG_{T0} = \frac{1.5 (NG_{T0} - CL_{W}) (GRWT_{T0} - DWT)}{2}$$
 (30)

or or its association that

$$VMOMG_{L} = \frac{1.5 (NG_{L} - CL_{W}) GRWT_{L}}{2}$$
 (31)

 $VNDMG_{T0}$ = maximum vertical load on main gear at takeoff weight,

VMXMG_L = maximum vertical load on main gear at landing weight, 1b

The maximum vertical loads on the nose gear are determined from the maximum vertical loads on the main gear.

$$VMCNG_{T0} = 2 VMCMG_{T0} \left(\frac{A_{T0}}{DIST} \right)$$
 (32)

$$VMXNG_{L} = 2 VMXMG_{L} \left(\frac{A_{L}}{DIST} \right)$$
 (33)

 $VMXNG_{T0}$ = maximum vertical load on nose gear at takeoff weight,

 $VMCNG_L$ = maximum vertical load on nose gear at landing weight,

 A_{TO} = distance from CG at takeoff to main gear, in.

A_T = distance from CG at landing to main gear, in.

DIST = distance from main gear to nose gear, in.

The two-point landing loads are determined for both the main and nose gears at both the takeoff and landing weights. Therefore, the routine in equations 17 through 29 is executed four times. In each case, the drag load is one-quarter of the vertical load and the side load is 0.

$$VF = VMXMG_{TO}$$
, $VMXMG_{L}$, $VMXNG_{TO}$, and $VMXNG_{L}$

DF = 0.25 VF

SF = 0

SPINUP

Before computing the spinup loads, the inertia of the nose gear wheels, tires, and tubes must be determined. (The inertia of the main gear wheels, tires, tubes, and brakes has already been determined.)

$$IW_{N} = \frac{\left(\frac{0D_{N}}{12\ 2.52}\right)^{2}\ TT_{N} + \left(\frac{0D_{N} - 1.818\ W_{N}}{12\ 2.5}\right)WHEEL_{N}}{g}$$
(27)

 IW_N = inertia of nose gear wheels, tires, and tubes, slug-ft²

The spinup loads are determined for both the main and nose gears at both the takeoff and landing weights; therefore, equations 28 through 35 are executed four times, each time followed by the routine in equations 17 through 29.

TV, the time to develop the spinup vertical reaction, is computed by equation 28.

$$TV = \frac{SS - \left(SS^2 - 1.5 \left(NG - CL_W\right) 29.8 \left(\frac{STREFF}{2} + 0.08 \text{ OD}\right)\right)^{0.5}}{1.5 \left(NG - CL_W\right) 14.9}$$
 (28)

TV = time to develop the vertical reaction, sec

SS = sink speed, either SS_{T0} or SS_L , ft/sec

 $NG = load factor, either <math>NG_{TO}$ or NG_{L}

STREFF = effective stroke of main or nose gear at takeoff or landing weight, ft

OD = outside diameter of tires, either OD_M or OD_N , ft

TSU, the time for the wheel circumferential velocity to reach ground velocity, is computed by equation 29.

$$TSU = \frac{VL \ IW}{0.55 \ VMX \ (0.432 \ OD)^2} + 0.363 \ TV$$
 (29)

TSU = time for wheel circumferential velocity to reach ground velocity, sec

VL = landing speed, either VL_{TO} or VL_L, ft/sec

IW = inertia of the wheels, tires, tubes, and brakes, either IW_M or IW_N , slug-ft²

 $\label{eq:VMX} \begin{array}{ll} \text{VMX} = \text{maximum vertical load, either VMXMG}_{T0}, \text{ VMXMG}_{L}, \text{ or } \\ \text{VMXNG}_{L}, \text{ 1b} \end{array}$

If TSU is greater than TV, TSU is recomputed by equation 30.

$$TSU = \frac{TV}{0.5 \text{ PI}} \left(\cos^{-1} \left[1 - \frac{VL \text{ IW PI}}{1.1 (0.4320D)^2 \text{ VMX TV}} \right] \right)$$
 (30)

FVSU, the vertical load at time TSU, is computed by either equation 31 or 32.

FVSU = VMX sin
$$\left[\frac{PI - TSU}{2 - TV}\right]$$
 when TV > TSU (31)

$$FVSU = VMX$$
 when $TSU > TV$ (32)

FVSU = the vertical spinup load at time TSU on either the main or nose gear at either the takeoff or landing weight, 1b

The vertical, drag, and side loads are then determined by equations 33 through 35.

$$VF = FVSU$$
 (33)

$$DF = 0.55 \text{ FVSU} \tag{34}$$

$$SF = 0 ag{35}$$

SPRINGBACK

The springback loads are determined for both the main and nose gears at both the takeoff and landing weights.

The springback loads are computed from the maximum vertical loads, the previously computed spinup loads, and the fore-aft angle of the strut, without going through the routine in equations 17 through 29.

$$AL_{SB} = VMX CSV$$
 (36)

$$NL_{SB} = AMAX1 \left[0.893 \ NL_{SU}, 0.893 \ NL_{SU} + 0.9 \ FVSU \sin[A1] \right]$$

+ VMX
$$\sin [A1]$$
 (37)

AL_{SB} = axial load on either the main or nose gear strut at either the takeoff or landing weight for the springback condition, 1b

NL_{SB} = normal load on either the main or nose gear strut at either the takeoff or landing weight for the springback condition, lb

NL_{SU} = normal load on either the main or nose gear strut at either the takeoff or landing weight for the spinup condition, 1b

BRAKED ROLL

The braked roll loads are determined at both the takeoff and landing weights for the main gear only.

$$VF = \frac{1.5 \text{ GRWT BRC}}{2}$$
 (38)

She and the will be the

$$DF = 0.8 VF \tag{39}$$

$$SF = 0 \tag{40}$$

GRWT = gross weight, either GRWT_{TO} or GRWT_I, 1b

BRC = braked roll constant (1.0 at takeoff, 1.2 at landing)

DRIFT LANDING

The drift landing loads are determined at both takeoff and landing weights for the main gear only.

$$VF = 0.5 VMX \tag{41}$$

$$DF = 0 (42)$$

$$SF = 0.8 VF \tag{43}$$

UNSYMMETRICAL BRAKING

The unsymmetrical braking loads are determined for both the main and nose gears at both the takeoff and landing weights.

Before computing the unsymmetrical braking loads, \mathbf{B}_{T0} and \mathbf{B}_{L} must be defined.

 B_{TO} = distance from CG at takeoff to nose gear, in.

B, = distance from CG at landing to nose gear, in.

The main gear loads at takeoff and landing are computed by equation 44 through 46.

$$VF = \frac{1.5 \text{ GRWT B}}{0.4 \text{ CGG} + 2 \text{ DIST}}$$
 (44)

$$DF = 0.8 VF \tag{45}$$

$$SF = 0 (46)$$

B = distance from CG to nose gear, either B_{TO} or B_{L} , in.

CGG = distance from CG to ground, in.

The nose gear loads at takeoff and landing are computed by equations 47 through 49.

$$VF = \left(\frac{A}{DIST} + \frac{0.4 \text{ B CGG}}{DIST^2}\right) 1.5 \text{ GRWT}$$
 (47)

DF = AMIN1
$$\left[0.8 \text{ VF}, \frac{\text{B DMGS } 1.5 \text{ GRWT}}{4 \text{ DIST}^2}\right]$$
 (48)

$$SF = 0 (49)$$

A = distance from CG to main gear, either A_{T0} or A_L , in.

DMGS = distance between main gear struts, in.

AMIN1 = absolute minimum of the two arguments

TOWING

The towing loads are determined for both the main and nose gears at the takeoff weight only.

FTOW, the tow load, must first be computed as a function of the takeoff weight.

Frow =
$$\frac{6 \text{ GRWT}_{T0}}{70}$$
 + 6,429 (when 30,000 GRWT_{T0} < 100,000) (51)

FTOW = tow load, 1b

The main gear towing loads are then computed by equations 53 through 55.

$$VF = \frac{1.5 \text{ GRWT}_{T0} \text{ B}_{T0}}{2 \text{ DIST}}$$
 (53)

$$DF = 1.5 FTOW 0.75$$
 (54)

$$SF = 0 ag{55}$$

The nose gear towing loads are computed by equation 56 through 58.

$$VF = \frac{A_{TO} 1.5 \text{ GRWT}_{TO}}{DIST}$$
 (56)

$$DF = 1.5 FTOW (57)$$

$$SF = 0 ag{58}$$

TURNING

The turning loads are determined for both the main and nose gear at the takeoff weight only.

The main gear turning loads are computed by equations 59 through 61.

$$VF = 1.5 \text{ GRWT}_{TO} \left(\frac{0.5 \text{ B}_{TO}}{\text{DIST}} + \text{AMIN1} \left[\frac{0.5 \text{ B}_{TO}}{\text{DIST}}, \frac{0.5 \text{ CGG}}{\text{DMGS}} \right] \right)$$
(59)

$$DF = 0 ag{60}$$

SF = VF AMIN1
$$\left[0.5, \frac{0.5 \text{ B}_{T0} \text{ DMGS}}{\text{DIST CGG}}\right]$$
 (61)

The nose gear turning loads are computed by equations 62 through 64.

$$VF = \frac{A_{TO} \cdot 1.5 \cdot GRWT_{TO}}{DIST}$$
 (62)

$$DF = 0 ag{63}$$

SF = VF AMIN1
$$\left[0.5, \frac{0.5 \text{ B}_{T0} \text{ DMGS}}{\text{DIST CGG}}\right]$$
 (64)

STRUT DESIGN LOADS

The inner and outer cylinder weights are determined by computing the area at the four sections shown in Figure 37. The area at each section is computed for each load condition at which loads have been computed (or input), with the maximum area being saved for the final weight calculation.

The analysis of the inner and outer cylinders is identical for the main and nose gears (except that the drift landing condition does not apply to the nose gear); therefore, only the main gear calculations are described.

The deflections at the bottom of the strut must be determined before the moments at a section can be computed. The deflections are assumed to be proportional to the square of the distance from the trunion; therefore, if the deflections at section 2 are known, the deflections at the bottom of the strut (the axle) can be computed by equations 65 through 68.

$$RB2 = \left(\frac{TOTLNG}{TOTLNG - LNGTH_2}\right)^2$$
 (65)

$$Y_{AX} = Y_2 RB2 \tag{66}$$

$$Z_{AX} = Z_2 RB2 \tag{67}$$

$$PHI_{AX} = PHI_2 RB2$$
 (68)

RB2 = ratio of deflection at bottom of strut to deflection

 Y_{AY} = fore-aft deflection at bottom of strut, in.

 Z_{AY} = lateral deflection at bottom of strut, in.

 PHI_{AY} = angular deflection at bottom of strut, radians

 Y_2 = fore-aft deflection at section 2, in.

 Z_2 = lateral deflection at section 2, in.

PHI₂ = angular deflection at section 2, radians

TOTLNG = length of strut, axle to trunion, in.

LNGTH, = length from axle to section 2, in.

When the deflections at the bottom of the strut are known, the fore-aft bending moment at section I (I = 1, 2, 3, or 4) can be computed by equation 69 (for each load condition except drift landing). Equation 69 is illustrated in Figure 41.

$$BMY_{I} = \left(Y_{AX} + \mid ECC \sin \left[PHI_{AX}\right] \mid -Y_{I}\right) AL + LNGTH_{I} NL$$
 (69)

Figure 41. Geometry representation for fore-aft bending moment derivation.

BMY_I = fore-aft bending moment at section I (I = 1, 2, 3 or 4),
 in.-1b

ECC = eccentricity of wheels, in.

 Y_T = fore-aft deflection at section I, in.

LNGTH, = length from axle to section I, in.

AL = axial load on strut at this load condition, 1b

NL = normal load on strut at this load condition, 1b

The deflections are initialized at 0. When the deflections are 0, equation 69 reduces to 70.

$$EMY_{T} = LNGTH_{T} NL$$
 (70)

The lateral bending moment at section I is computed by equation 71 (for each load condition except drift landing). Equation 71 is illustrated in Figure 42.

$$BMZ_{I} = \left(Z_{AX} + \mid ECC \cos \left[PHI_{AX}\right] \mid -Z_{I}\right) AL$$
 (71)

 BMZ_{T} = lateral bending moment at section I, in.-lb

 Z_T = lateral deflection at section I, in.

If the deflection are all 0, equation 71 reduces to equation 72.

$$BMZ_{I} = \left| ECC \right| AL \tag{72}$$

The torsional bending moment is determined by using the normal load in place of the axial load in equation 71; therefore, it can be computed by equation 73.

Figure 42. Geometry representation for lateral bending moment derivation.

$$TPHI_{I} = BMZ_{I} \left[\frac{NL}{AL} \right]$$
 (73)

 TPHI_{I} = torsional bending moment at section I, in.-1b

For the drift landing condition, $\mathrm{EMY}_{\mathrm{I}}$ and $\mathrm{TPHI}_{\mathrm{I}}$ are 0. The normal load acts at the ground instead of at the bottom of the strut; therefore, the distance from the section to the ground must first be found. The tire deflection is assumed to be 8 percent of the outside diameter. Equation 74 is used to calculate the distance.

$$DLLNG_{I} = LNGTH_{I} + \frac{0D_{M}}{2} - 0.08 \text{ } 0D_{M}$$
 (74)

 $DLLNG_{I}$ = length from ground to section I, in.

The normal load computed for the drift landing condition is 0.8 times the axial load. This normal load acts inboard, as shown in Figure 43. A normal load equal to 0.6 times the axial load (and therefore equal to 0.75 times the computed normal load) acts outboard on the opposite strut.

Figure 43. Drift landing normal loads.

If the eccentricity is negative (outboard), as shown in Figure 43. The moment at a section will be greater from the smaller normal load acting outboard than from the larger normal load acting inboard if the eccentricity is greater than 10 percent of the length from the ground to the section.

(0.6 AL) (DLLNG_I) + (AL) (ECC) > (0.8 AL) (DLLNG_I) - (ECC) (AL) (75)
$$|ECC| > \frac{DLLNG_{I}}{10}$$

In this case, equation 75 is used to compute the lateral bending moment, using a normal load equal to 0.75 times the computed normal load. Equation 75 is illustrated in Figure 44.

$$BMZ_{I} = (Z_{AX} + \mid ECC \mid - Z_{I}) AL + DLLNG_{I} 0.75 NL$$
 (76)

If the deflections are all 0, equation 76 reduces to equation 77.

$$BMZ_{I} = \left| ECC \right| AL + DLLNG_{I} 0.75 NL$$
 (77)

When the eccentricity is negative but less than one-tenth of the distance to the ground, the lateral bending moment for drift landing in computed by equation 78. Equation 78 is illustrated in Figure 45.

$$BMZ_{I} = (Z_{AX} - Z_{I} - | ECC | AL + DLLNG_{I} NL$$
 (78)

If the deflections are all 0, equation 78 reduces to equation 79.

$$BMX_{I} = - ECC AL + DLLNG_{I} NL$$
 (79)

Figure 44. Lateral bending moment for drift landing when the eccentricity is negative and greater than one-tenth the length to the ground.

Figure 45. Lateral bending moment for drift landing when the eccentricity is negative and less than one-tenth the length to the ground.

When the eccentricity is positive (inboard), the lateral bending moment from the computed normal load acting inboard is always the larger moment. This bending moment is computed by equation 80. Equation 80 is illustrated in Figure 46.

$$BMZ_{I} = (Z_{AX} + ECC - Z_{I}) AL + DLLNG_{I} NL$$
 (80)

If the deflections are all 0, equation 80 reduces to equation 81.

$$BMZ_{I} = ECC AL + DLLNG_{I} NL$$
 (81)

The resultant of the fore-aft and lateral bending moments is computed by equation 82.

$$BMR_{I} = \left(BMY_{I}^{2} + BMZ_{I}^{2}\right)^{0.5}$$
(82)

 $\underline{\mathsf{BMR}}_{I}$ = resultant of fore-aft and lateral bending moments at section I

STRUT SYNTHESIS

The area of the cylinder at each section is determined by finding the value of the cylinder diameter to wall thickness ratio for which the area required for strength is equal to the geometric area.

The search starts by assuming three values of diameter-to-wall-thickness ratio, and then computing the outside diameter of the cylinder for each of the assumed ratios. The outside diameter of the inner cylinder at section 4 is the piston diameter, DP_{M} . The outside diameter of the outer cylinder at sections 1, 2, and 3 is computed by equation 83. The 0.625 added to the piston diameter is the assumed average packing ring dimension.

$$DIA_{I} = \frac{DOT (DP_{M} + 0.625)}{DOT - 2}$$
 (83)

Figure 46. Lateral bending moment for drift landing when the eccentricity is positive.

DIA_I = outside diameter of cylinder at section I for assumed value of diameter to wall thickness ratio, in.

DOT = diameter to wall thickness ratio

Before the area can be computed, the bending modulus of rupture and the torsion modulus of rupture must be determined as functions of the diameter-to-wall-thickness ratio and the ultimate tensile strength of the material.

EMRU =
$$((0.000390625 \text{ T} - 0.3125) \text{ T} + 14.21875) \text{ DOT} - 0.0546875 \text{ T}^2 - 903.125) \text{ DOT} - (3.2421875 \text{ T} - 2903.125) \text{ T} - 142890.625$$
 (84)

TMOR =
$$((0.00109375 \text{ T} - 0.396875) \text{ T} + 47.5) \text{ DOT} + (0.05 \text{ T} - 27.25) \text{ T} + 1725.0) \text{ DOT} + 143.4875 \text{ T} + 38702.5$$
 (85)

EMRU = bending modulus of rupture, 1b/in.²

TMOR = torsion modulus of rupture, lb/in.²

T = ultimate tensile strength divided by 1,000, $1b/in.^2 \times 10^{-3}$

Figures 47 and 48 show the results of equation 84 and 85 for values of ultimate tensile strength from 180 to 260K, and for values of diameter-to-wall-thickness ratio from 10.0 to 50.0.

The area required for strength can then be computed by equation 86.

$$AS = \frac{8}{DIA_{I} \left(1 + \left(1 - \frac{2}{\Gamma OT}\right)^{2}\right)} \left(\left(\frac{BMR_{I}}{BMRU}\right)^{2} + \left(\frac{TPHI_{I}}{TMOR}\right)^{2}\right)^{0.5} + \frac{AL}{FCY}$$
(86)

BENDING MODULUS OF RUPTURE VS DIAMETER/THICKNESS RATIO FOR VALUES OF ULTIMATE TENSILE STRENGTH FROM 180K TO 260K

Figure 47. Bending modulus of rupture.

a . " The late of the late of

BENDING MODULUS OF RUPTURE VS DIAMETER/THICKNESS RATIO FOR VALUES OF ULTIMATE TENSILE STRENGTH FROM 180K TO 260K

Figure 48. Torsion modulus of rupture.

AS = area required for strength for assumed value of DOT, in.²

FCY = compression yield stress, lb/in.²

The geometric area for the assumed value of diameter to wall thickness is computed by equation 87.

$$AG = PI DIA_{I}^{2} \left(\frac{DOT-1}{DOT^{2}} \right)$$
 (87)

AG = geometric area for assumed value of DOT, in. 2

The ratio of the area required for strength to the geometric area is then determined for each of the three assumed values of diameter-to-wall-thickness ratio.

$$R = \frac{AS}{AG}$$
 (88)

R = ratio of area required for strength to geometric area

The program interpolates in the three assumed values of DOT to find the value for which R=1. Three new values of DOT are then assumed (the interpolated value, and one on either side), and a second pass is made through equations 83 to 88. The program interpolates for the final value of the diameter-to-wall-thickness ratio, and then calculates the final diameter and area.

$$DIAM = \frac{DOVT (DP_M + 0.625)}{DOVT - 2}$$
 (89)

AREAC = PI DIAM²
$$\left(\frac{\text{DOVT}-1}{\text{DOVT}^2}\right)$$
 (90)

Chia Charles

DIAM = final outside diameter of cylinder for this load condition, in.

AREAC = final area of cylinder section for this load condition, in.²

DOVT = final interpolated value of DOT for which R = 1

AREAC is saved if it is greater than any area previously computed at that section for another load condition.

At section 2, the diameter, DIAM, and the three moments are also saved, for use in the deflection analysis.

DEFLECTION ANALYSIS

As noted earlier, the deflections are initialized at 0. The first pass through the calculations of the area of the four cylinder sections (equations 65 through 90) is made with deflections equal to 0; therefore, equations 69, 71, 76, 78, and 80 reduce to equations 70, 72, 77, 79, and 81.

If the input data indicate that the deflection analysis is to be omitted, the program goes on to compute the inner and outer cylinder weights after the first pass through the area calculations.

If the deflections are to be included, the deflections at section 2 are computed, and the deflections at the other sections are then determined by assuming that the deflections are proportional to the square of the distance from the trunnion.

The moment of inertia at section 2 must be determined before the deflections can be calculated.

$$I2 = \frac{PI DIADZ^{4} \left(1 - \frac{1}{DOVRT2}\right) \left(1 - \left(\frac{2}{DOVRT2}\right) \left(1 - \frac{1}{DOVRT2}\right)\right)}{8 DOVRT2}$$
(91)

I2 = moment of inertia at section 2, in.⁴

DIADZ = diameter of outer cylinder at section 2, in.

DOVRT2 = diameter-to-wall-thickness ratio at section 2

The deflections at section 2 can now be calculated by equations 92 through 94.

$$Y_2 = \frac{BMYDZ \left(TOTLNG - LNGTH_2\right)^2}{2 E I2}$$
 (92)

$$Z_2 = \frac{BMZDZ \left(TOTLNG - LNGTH_2\right)^2}{2 E I2}$$
 (93)

$$PHI_{2} = \frac{TPHIDZ \left(TOTLNG - LNGTH_{2}\right)}{2 G I2}$$
(94)

BMYDZ = fore-aft bending moment from load condition which produced maximum area at section 2, in.-lb

BMZDZ = lateral bending moment from load condition which produced maximum area at section 2, in.-lb

TPHIDZ = torsion moment from load condition which produced the maximum area at section 2, in.-1b

 $E = modulus of elasticity, 1b/in.^2$

 $G = modulus of rigidity, 1b/in.^2$

The deflections at sections 3 and 4 are then calculated by equations 95 through 98.

$$RI2 = \left(\frac{TOTLNG - LNGTH_{I}}{TOTLNG - LNGTH_{2}}\right)^{2}$$
(95)

$$Y_{I} = Y_{Z} RI2$$
 (96)

$$Z_{T} = Z_{2} RI2$$
 (97)

$$PH_{1}^{T} = PH_{2}^{T} RI2$$
 (98)

RI2 = ratio of deflection at section 2

 PHI_{T} = angular deflection at section I, radians

The program then returns to recalculate the areas at the four sections, starting with equation 65. This loop continues for six passes, or until the area at section 2 is closer to the area from the previous pass than a given tolerance.

INNER AND OUTER CYLINDER WEIGHT

The weight of the outer cylinder is determined from the areas of sections 1, 2, and 3.

WTOC =
$$\left(\frac{AREA_1 + 2 AREA_2 + AREA_3}{4}\right) \left(LNGTH_1 - LNGTH_3\right)$$
STRUTS RHO WCOC (99)

WTOC = weight of outer cylinder, 1b

 $AREA_{I}$ = maximum of areas computed at section I for each load condition, in.²

STRUTS = number of struts, main or nose gear (always for nose gear) .

RHO = density of material, lb/in.³

WCOC = weight coefficient for outer cylinder

The inner cylinder extends from the axle to section 2, the midpoint of the outer cylinder, as shown in Figure 37. The diameter of the inner cylinder is DP_{M} , the piston diameter. The part of the inner cylinder from the axle to section 3 has the area computed at section 4, and the part from section 3 to section 2 has an area based on an assumed diameter-to-wall-thickness ratio.

WTIC =
$$\frac{\left(\text{PI DP}_{\text{M}}^{2} \text{ (DOT32-1) (LNGTH}_{2}\text{-LNGTH}_{3})}{\text{DOT32}^{2}} + \text{AREA}_{4} \text{ LNGTH}_{3}\right)$$

WTIC = weight of inner cylinder, 1b

DOT32 = assumed diameter-to-thickness ratio of inner cylinder between sections 2 and 3

WCIC = weight coefficient for inner cylinder

AXLE WEIGHT

There is one axle for each wheel on both the main gear and nose gear. The length of the axle is computed by equation 101. (See Figure 38.)

$$AXLGTH = W + \frac{DP}{2}$$
 (101)

AXLGTH = length of axle, in.

W = width of tires, either W_M or W_N , in.

 $DP = piston diameter, either <math>DP_M$ or DP_N , in.

The total load on the axles is computed by equation 102 for the main gear, and 103 for the nose gear.

$$AXLOAD = GRWT_{TO}$$
 (102)

$$AXLOAD = GRWI_{TO} - SW STRUI_{M}$$
 (103)

AXLOAD = total load on axles for either main or nose gear, 1b

The bending moment at the side of the piston and the torsion moment are computed by equations 104 and 105. These equations assume that one tire is flat when there are two wheels on a main or nose gear strut, and that two tires on a strut are flat when there are four wheels on the main gear struts.

$$BMAX = 1.5 \left(\frac{AXLOAD}{AMAX1 [2, WS]} \right) W \left(\frac{2}{STRUTS} \right)$$
 (104)

$$TMAX = 1.5 \left(\frac{0.8 \text{ AXLOAD}}{AMAX1} \left[\frac{0}{2}, \text{ WS} \right] \left(\frac{0}{2} \right) \left(\frac{2}{STRUTS} \right)$$
 (105)

BMAX = bending moment on each axle, in.-1b

TMAX = torsion moment on each axle, in.-lb

WS = number of wheels per strut, either WS_M or WS_N

AMAX1 - absolute maximum of the two arguments

Although the axle is a solid cylinder, the bending modulus of rupture and torsion modulus of rupture are computed by equations 84 and 85, using a value of diameter-to-wall-thickness ratio equal to 10. The diameter of the axle at the side of the piston can now be computed.

DIAAX =
$$\left(\frac{32}{\text{PI}} \left(\frac{\text{BMAX}}{\text{BMRU}}\right)^2 + \left(\frac{\text{TMAX}}{2 \text{ TMOR}}\right)^2\right)^{0.5}\right)^{0.333}$$
 (106)

DIAAX = diameter of axle at side of piston, in.

The total weight of all the axles on either the main or nose gear can then be computed by equation 107.

WTAXL = PI
$$\left(\frac{\text{DIAAX}}{2}\right)^2$$
 AXLGTH WS STRUTS RHO (107)

WTAXL = total weight of axles for either main or nose gear

BOGIE WEIGHT

The weight of the bogie is calculated only when there are four wheels per strut on the main gear. The length of the bogie is computed by equation 108. (See Figure 39.)

$$BOGL = 1.1 OD_{M} + DP_{M}$$
 (108)

BOGL - length of bogie, in.

Each half of the bogie is a separate structural element, supporting the loads on two axles. Each tire will normally carry one-eighth of the total aircraft weight, but when both tires on one axle are flat, the two remaining tires on that strut will each carry one-fourth of the total weight. Assuming a side load of 0.8 times the vertical load, equations 109 and 110 will compute the bending moment and torsion moment at the midpoint of the bogie.

$$BMB = \left(\left(1.5(2) \left(\frac{GRWT_{T0}}{4} \right) \left(\frac{2}{STRUT_{M}} \right) \right)^{2}$$

+
$$\left(1.5(2)\left(\frac{0.8 \text{ GRWT}_{T0}}{4}\right) \left(\frac{2}{\text{STRUT}_{M}}\right)^{2}\right)^{0.5}$$
 (109)

$$TMB = 1.5(2) \left(\frac{0.8 \text{ GRWT}_{T0}}{4} \right) \left(\frac{2}{\text{STRUT}_{M}} \right) \left(\frac{0D_{M}}{2} \right)$$
 (110)

BMB = bending moment at midpoint of bogie, in.-1b

TMB = torsion moment at midpoint of bogie, in.-1b

The bending modulus of rupture and the torsion modulus of rupture are computed by equations 84 and 85, using an assumed value of diameter-to-wall-thickness ratio. The diameter of the bogie can then be calculated by equation 111.

$$BD = \left(\frac{\frac{32}{PI} \left(\left(\frac{BMB}{BMRU}\right)^{2} + \left(\left(\frac{TMB}{TMOR}\right)^{2}\right)^{0.5}}{1 + \left(\left(\frac{DOTB-2}{DOTB}\right)^{2}\right)}\right)^{0.333}$$
(111)

BD = diameter of bogie, in.

DOTB = assumed value of diameter-to-wall-thickness ratio for bogie.

The weight of the bogie can then be computed by equation 112.

$$BWT = PI BD^{2} \left(\frac{DOTB-1}{DOTB^{2}}\right) BOGL STRUT_{M} RHO WCB$$
 (112)

BWT = weight of bogie, 1b

WCB = weight coefficient for bogie

SIDE STRUT AND DRAG STRUT WEIGHT

The weight of the main gear side strut is computed for the drift landing and turning conditions. The maximum weight is saved. The nose gear side strut is computed for the turning condition. (See Figure 40.)

SSWT = 0.7698 TOTLNG
$$\left(\frac{3 \text{ NL}}{\text{FCY}}\right)$$
 RHO STRUTS WCSS (113)

SSWT = weight of main or nose gear side strut, 1b

WCSS = side strut weight coefficient

The weight of the drag strut is computed for all conditions except drift landing and turning. The maximum weight is saved.

DSWT = 0.7698 TOTLNG
$$\left(\frac{3 \text{ NL}}{\text{FCY}}\right)$$
 RHO STRUTS WCDS (114)

DSWT = weight of main or nose gear side strut, 1b

WCDS = drag strut weight coefficient

OIL WEIGHT

The weight of the oil is calculated by equation 115.

WTOIL = PI
$$\left(\frac{DP}{2}\right)^2$$
 1.5 STROKE STRUTS DOIL (115)

WTOIL = weight of oil for either main or nose gear, 1b

STROKE = stroke of either main or nose gear, in.

DOIL = density of oil, 1b/in.3

MISCELLANEOUS WEIGHT

The miscellaneous weight is a function of TOTCAL, the total calculated structure weight, and TOTSIW, the total calculated weight.

$$TOTSTW = TOTCAL + WITB$$
 (117)

TOTCAL = total calculated structure weight of either main or nose gear, 1b

TOTSTW = total calculated weight of either main or nose gear, 1b

WITB = weight of wheels, tires, tubes, and brakes for either main or nose gear, 1b

The miscellaneous weight is calculated by equation 118 for the main gear, and equation 119 for the nose gear.

WTMISC = (WCMG-1) TOTCAL + WCMG (0.25 TOTSTW + 0.50 TOTCAL +
$$0.001 \text{ GRWT}_{TO}$$
) (118)

WTMISC = miscellaneous weight of either main or nose gear, 1b

WCMG = main gear weight coefficient

WCNG = nose gear weight coefficient

TOTAL WEIGHT

The total weight of the main gear is calculated by equation 120, and the total weight of the nose gear by equation 121.

$$TOTAL = TOTSTW + WIMISC + WMI$$
 (120)

$$TOTAL = TOTSTW + WIMISC$$
 (121)

TOTAL = total weight of either main or nose gear, 1b

WMI = input miscellaneous weight, 1b

TAIL WHEEL WEIGHT

If the auxiliary gear is a tail wheel instead of a nose gear, equation 122 is used, where TOTSTW is the total calculated weight of the main gear.

TAILWT =
$$\frac{\text{TOTSTW}^{0.2963} (GRWT_{T0} - SW STRUT_{M})^{0.6238}}{e^{2.024}}$$
(122)

TAILWT = weight of tail wheel, 1b

CENTER OF GRAVITY

The centers of gravity of the main gear and the nose gear are determined by calculating the center of gravity of the total of the calculated components (inner cylinder, outer cylinder, axle, brakes, tires, etc.). This assumes that the miscellaneous weight has the same CG as the calculated components.

and a supplied that I have been

Section III

PROGRAM DESCRIPTION

GENERAL DISCUSSION

The methods, equations, and logic discussed in section II have been programmed in FORTRAN for the CDC 6600 computer. The landing gear program is in overlay (6, 0) of SWEEP. This overlay contains the main program (LANDGR) and five subroutines. The program subroutine flow diagram is shown in Figure 49. The functional flow diagram is shown in Figure 50.

Figure 49. Subroutine flow diagram.

Figure 50. Functional flow diagram.

MASS STORAGE FILES

Mass storage file record 25 is the only record read in the landing gear program. Record 25 is read in program LANDGR. No mass storage file records are written in the landing gear program.

Record 25 contains the landing gear input data array D. Array D is placed in labeled common block/LGDATA/ so that the input data may be transferred to subroutines LGEAR and LGWT.

INPUT DATA

The input to the landing gear program is contained in Array D, which has 116 locations.

The first 45 locations contain permanent data which are read from the permanent data file, TAPE 7. Table 31 contains a description of the permanent data and lists the values which are stored in the permanent data file. These stored values may be changed when the variable input data for the landing gear are read.

Locations 46 through 116 in Array D contain the variable input data. The variable input data are described in Table 32.

TABLE 31. INPUT ARRAY D - PERMANENT DATA

Loc	Description	Value	Subroutine Reference
1 2	Fraction of energy absorbed by strut Ratio of nose gear piston diameter to main	0.1	LGEAR LGWT
-	gear piston diameter	"	2011
3	Spinup coefficient	1.4	LGEAR
4	Springback coefficient	.893	LGEAR
5	Main gear miscellaneous weight factor	.25	LGWT
6	Main gear miscellaneous weight factor	.50	LGWT
7	Main gear miscellaneous weight factor	.001	LGWT
8	Nose gear miscellaneous weight factor	.25	LGWT
9	Nose gear miscellaneous weight factor	.50	LGWT

TABLE 31. INPUT ARRAY D - PERMANENT DATA (CONT)

Loc	Description	Value	Subroutine Reference
10	Two-point coefficient	.25	LGEAR
11	Drift landing coefficient	.8	LGEAR
12	Area tolerance (square inches)	.1	LGWT
13	Landing speed constant	34.7776	LGEAR
14	Load factor constant	.98	LGEAR
15	Load factor constant	.08	LGEAR
16	Load factor constant	.8	LGEAR
17	Tail wheel weight equation constant	2.024	LGWT
18	Tail wheel weight equation constant	. 2963	LGWT
19	Tail wheel weight equation constant	.6238	LGWT
20	Diameter-to-thickness ratio factor	.8	LGWT
21	Diameter-to-thickness ratio factor	1.0	LGWT
22	Diameter-to-thickness ratio factor	1.2	LGWT
23	Main gear stroke coefficient at takeoff	1.0	LGEAR
24	Main gear stroke coefficient at landing	1.0	LGEAR
25	Pounds of brake per foot-pound of kinetic energy	.408 x 10 ⁻⁵	LGEAR
26	Diameter-to-thickness ratio of inner cylinder above section 2	50.0	LGWT
27	Negligible load check (pounds)	100.0	LGWT
28	Diameter-to-thickness ratio of bogie	20.0	LGWT
29	Assumed diameter-to-thickness ratio	10.0	LGWT
30	Assumed diameter-to-thickness ratio	30.0	LGWT
31	Assumed diameter-to-thickness ratio	50.0	LGWT
32	Diameter-to-thickness ratio of axle	10.0	LGWT
33	Nose gear stroke coefficient at takeoff	1.0	LGEAR
34	Nose gear stroke coefficient at landing	1.0	LGEAR
35	Number of main gear struts	2.0	LGEAR, LGWT
3 6	Density of oil (pounds/cubic inch)	.03	LGWT
37	Braked roll constant	1.0	LGEAR
38	Braked roll constant	1.2	LGEAR
39	Fraction of strut length to section 1	1.00	LGWT

TABLE 31. INPUT ARRAY D - PERMANENT DATA (CONCL)

Loc	Description	Value	Subroutine Reference
41	Fraction of strut length to section 2 Fraction of strut length to section 3 Fraction of strut length to section 4 Ultimate-to-limit ratio Not used Not used	.60	LGWT
42		.20	LGWT
43		.12	LGWT
44		1.5	LGEAR, LGWT

TABLE 32. INPUT ARRAY D - VARIABLE DATA

Loc	Description	Units	Note(s)	Subroutine Reference
46	Takeoff weight	1b	1	LGEAR, LGWT
47	Landing weight	1Ъ	1	LGEAR, LGWT
48	Aborted takeoff & weight	1b	1	LGEAR
49	Fuselage station of CG of aircraft at takeoff	in.	1	LGEAR, LGWT
50	Fuselage station of CG of aircraft at landing	in.	1	LGEAR
51	Distance from aircraft CG to ground	in.	1	LGEAR
52	Fuselage station of main gear	in.	1	LGEAR, LGWT
53	Fuselage station of nose gear (or tail wheel)	in.	1	LGEAR, LGWT
54	Distance between main gear struts	in.	1	LGEAR
55	Ultimate tensile strength of material	$1b/in.^2$		LGWT
56	Poisson's ration of material			LGWT
57	Compression yield stress of material	$1b/in2^2$		LGWT
58	Modulus of elasticity of material	$1b/in.\frac{2}{3}$		LGWT
59	Density of material	lb/in. ³		LGWT
60	Main gear deflection indicator		2	LGWT
61	Nose gear deflection indicator		2,3	LGWT
62	Auxiliary gear indicator		3	LGEAR, LGWI
63	Weight coefficient for main gear		ıl .	LGWT
64	Weight coefficient for nose gear		3	LGWT

TABLE 32. INPUT ARRAY D - VARIABLE DATA (CONT)

Loc	Description	Units	Note(s)	Subroutine Reference
65	Weight coefficient for outer cylinder of main and nose gear			LGWT
66	Weight coefficient for inner cylinder of main and nose gear			LGWT LGWT
67	Weight coefficient for bogie			LGWT
68	Weight coefficient for main gear drag strut		2	LGWT
69	Weight coefficient for main gear side strut		2	LGWT
	Weight coefficient for nose gear drag strut		2,3	LGWT
71	Weight coefficient for nose gear side strut		2,3	LGWT
72	Axle to trumnion length of main gear with piston extended	in.	1	LGWT
73	Stroke of main gear	in.	1,4	LGEAR, LGWT
74	Piston diameter of main gear	in.	5	LGWT
75	Eccentricity of main gear wheels	in.	6	LGWT
76	Wheels per strut on main gear		7	LGEAR, LGWT
77	For-aft angle of main gear strut	deg	8	LGEAR, LGWT
78	Lateral angle of main gear strut	deg	8	LGEAR, LGWT
79	Outside diameter of main gear tires	in.		LGEAR, LGWT
80	Width of main gear tires	in.	i	LGEAR, LGWT
81	Axle to trunnion length of nose gear with piston extended	in.	1,3	LGWT
	Stroke of nose gear	in.	1,3,4	LGEAR, LGWT
83	Piston diameter of nose gear	in.	3,5	LGWT
84	Eccentricity of nose gear wheels	in.	3,6	LGWT
85	Wheels per strut on nose gear		3,7	LGEAR, LGWT
86	Fore-aft angle of nose gear stit.	deg	3,8	LGEAR, LGWT
87	Outside diameter of nose gear tires	in.	3	LGEAR, LGWT
88	Width of nose gear tires	in.	3	LGEAR, LGWT
89	Sink speed at takeoff weight	ft/sec	1,9	LGEAR, LGWT
90	Sink speed at landing weight	ft/sec	1	LGEAR
91	Landing speed at takeoff weight	ft/sec	1,10	LGEAR
92	Landing speed at landing weight	ft/sec	1,10	LGEAR
93	Limit load factor at takeoff weight		11	LGEAR
94	Limit load factor at landing weight		11	LGEAR
95	Coefficient of lift at takeoff weight		10	LGEAR
96	Coefficient of lift at landing weight		10	LGEAR

TABLE 32. INPUT ARRAY D - VARIABLE DATA (CONT)

Loc	Description	Units	Note(s)	Subroutine Reference
97	Area of wing	ft ²	10	LGEAR
98	Wing lift coefficient			LGEAR
99	Not used	1		LGEAR
100	Main gear wheel weight per aircraft	1b	12	LGEAR
101	Inertia of main gear wheels, tires,	slug ft ²	13	LGEAR
	tubes, and brakes			
102	Main gear tire weight per aircraft	1b	12	LGEAR
100	Brake weight per aircraft	1b	12	LGEAR
104	Main gear miscellaneous weight per	1b	14	LGWT
	aircraft		1	
105	Nose gear wheal weight per aircraft	1b	3,12	LGEAR
106	Nose gear tire weight per aircraft	1b	3,12	LGEAR
107	Main gear axial load \ any conditions	1b	9	LGEAR
108	Main gear normal load / except turning	1b	9	LGEAR
	or drift landing	<u> </u>		
109	Main gear axial load Drift landing	1b	9	LGEAR
110	Main gear normal load			
111	Main gear axial load Turning	1b	9	LGEAR
112	Main gear normal load	1b	9	LGEAR
113	Nose gear axial load \ Any conditions	1b	3,9	LGEAR
114	Nose gear normal load except turning	1b	3,9	LGEAR
115	Nose gear axial load Turning	1b _.	3,9	LGEAR
116	Nose gear normal load	1b	3,9	LGEAR

- 1. If the takeoff weight is not input in location 46 of the landing gear NOTE data, the data in locations 47-54, 72, 73, 81, 82 and 89-92 should also be omitted. The data in these locations will be transferred from the general input data to the landing gear input data in subroutine DLNDGR in the data management module.
- 2. If the main gear deflection indicator in location 60, or the nose gear deflection indicator in location 61, is 0, the deflections of the strut will be determined. If the deflection indicator is 1, the deflection analysis will be bypassed in subroutine LGWT.

In theory, the deflections would be determined when there are no drag and side struts supporting the main strut, and bypassed when there are supporting struts. However, there is no restriction in the program, and the user may! the deflections and supporting struts, or neither.

The "Market William Workship

TABLE 32. INPUT ARRAY D - VARIABLE DATA (CONT)

The drag and side strut weights are always computed in subroutine LGWT, but may be deleted by setting the corresponding weight coefficient to 0. The weight coefficients are in locations 68 through 71.

- 3. If the auxiliary gear indicator in location 62 is 1, the auxiliary gear is a nose gear. The weight of the nose gear is determined in the same manner as the main gear. If location 62 is 0, the auxiliary gear is a tail wheel. The weight of a tail wheel is calculated from a single statistical equation; therefore, the nose gear data in locations 61, 62, 64, 81-88, 105, 106, and 113-116 may be omitted.
- 4. The main gear stroke in location 73 and the nose gear stroke in location 82 are in the vertical direction, not parallel to the strut (unless the strut is perpendicular).
- 5. If the piston diameter of the main gear is not input in location 74, it will be computed in subroutine LGWT as a function of the static load.

If the piston diameter of the nose gear is not input in location 83, it will be computed in LGWT as a function of the main gear piston diameter.

6. The eccentricity is measured as shown in Figure 51. The eccentricity is positive in the inboard direction, negative in the outboard direction.

Figure 51. Sign convention for main gear eccentricity.

7. The main gear must have 1, 2, or 4 wheels per strut. If there are 4 wheels per strut, the weight of the bogie will be determined in subroutine LGWT.

The nose gear must have 1 or 2 wheels per strut.

TABLE 32. INPUT ARRAY D - VARIABLE DATA (CONT)

8. The fore-aft and lateral angles of the main gear strut are measured as shown in Figure 52. The fore-aft angle is positive in the forward direction; the lateral angle is positive in the outboard direction. The nose gear has only a fore-aft angle, as shown in Figure 53.

Nose gear strut

Fore-aft angle

axle

Figure 52. Main gear strut angles.

Figure 53. Nose gear strut angles.

9. If the sink speed is input in location 89 in the landing gear data, the loads will be computed in subroutine LGEAR, and the input loads in locations 107 through 116 may be omitted.

If the sink speed is not input, the loads cannot be computed; one or more sets of loads must be input for both the main gear and the nose gear. If more than one set of loads is input, the program will determine the critical loads, just as when all the loads are computed.

If the main gear input loads are from either the two-point landing, spinup, springback, braked roll, unsymmetrical braking, or towing conditions, they are input in locations 107 and 108. The loads are in the fore-aft direction, and must be input if the weight of the main gear drag strut is to be computed.

If the main gear input loads are from the drift landing condition, they are input in locations 109 and 110; if from turning, they are input in locations 111 and 112. Either the turning or drift landing loads must be input if the weight of the main gear side strut is to be computed.

TABLE 32. INPUT ARRAY D - VARIABLE DATA (CONCL)

If the nose gear input loads are from any condition except turning, they are input in location 113 and 114. These loads are in the foreaft direction, and must be input if the weight of the nose gear drag strut is to be computed.

If the nose gear input loads are from the turning condition, they are input in locations 115 and 116. The turning loads must be input if the weight of the side strut is to be computed.

- 10. If the landing speed at takeoff weight is input in location 91, the landing speed at landing weight must also be input in location 92, and the wing area in location 97 and the lift coefficients in locations 95 and 96 may be omitted. If location 91 is 0, both landing speeds will be computed from the input data in locations 95, 96, and 97.
- 11. If the load factor at takeoff weight is input in location 93, the load factor at landing weight must also be input in location 94. If location 93 is 0, both load factors will be computed.
- 12. If the main gear wheel weight is input in location 100, the main gear tire and brake weights in locations 102 and 103 and the nose gear wheel and tire weights in locations 105 and 106 must also be input. If location 100 is 0, the wheel, tire, and brake weights for both the main and nose gears will be computed in subroutine LGEAR.
- 13. If the inertia of the main gear wheels, tires, and brakes is not input in location 101, it will be computed.
- 14. The miscellaneous weight input in location 104 is in addition to the miscellaneous weight computed by statistical methods in subroutine LGWT.

LABELED COMMON BLOCKS

The common block labeled/IPRINT/contains array IP (80). Each location in array IP is a print indicator. A "0" indicates print, or "1" indicates do not print.

Location 59 in array IP is used in program LANDGR to determine whether the input data will be printed.

Location 60 in array IP is used in subroutine LGEAR to indicate whether the landing gear loads will be printed.

The common block labeled/FDATT/contains array FDAT (60). The weight summary data from each component of the aircraft are stored in array FDAT. Locations 41 through 50 in array FDAT are used to store the weights and fuselage stations of the main gear and either the nose gear or tail wheel. These variables are described in Table 33.

TABLE 33. FDAT ARRAY VARIABLES

LOC	Description	Subroutine Reference
41	Total main gear weight, 1b	LGWT
42	Main gear wheel, tube, tire, and brake weight, 1b	LGWT
43	Main gear strut weight, 1b	LGWT
44	Main gear miscellaneous weight, 1b	LGWT
45	Fuselage station of main gear, in.	LGWT
46	Total weight of nose gear or tail wheel, lb	LGWT
47	Nose gear wheel, tube, and tire weight, 1b	LGWT
48	Nose gear strut weight, 1b	LGWT
49	Nose gear miscellaneous weight, 1b	LGWT
50	Fuselage station of nose gear or tail wheel, in.	LGWT

100

The common block labeled/LGDATA/appears in the landing gear program only. This common block contains the input data array D; the landing gear loads array FLOADC; and the wheel, tire, tube, and brake weights.

The input array D is described in Tables 31 and 32.

The landing gear loads are computed in subroutine LGEAR and stored in array FLOADS. This array is described in Table 34.

The wheel, tire, tube, and brake weights are also computed in subroutine LGEAR. These variables are described in Table 35.

SUBROUTINE DESCRIPTIONS

PROGRAM LANDGR

General Description

Deck name:

LANDGR

Entry name:

OVERLAY (5HALPHA, 6,0)

Called by:

OLAYOO

Subroutines called:

LGEAR, LGWT

Program LANDGR is the main program of the landing gear module. It reads the input data from mass storage file record 25, and prints the variable input data if the print indicator is on. It then calls subroutine LGEAR to compute the landing gear loads, and subroutine LGWT to compute the landing gear weights.

Variables Calculated

Variable	Description			
N	General index			

Labeled Common Blocks

IP (59), which is taken from common block/IPRINT/, indicates whether the variable input data in locations 46 to 116 of the input data array will be printed (Figure 54).

TABLE 34. ARRAY FLOADS IN LGDATA BLOCK

LOC	Description	·	Units	Subroutine Reference
1	Axial load - two-point landing		1b	LGEAR, LGWT
2	Normal load - two-point landing			
3	Axial load - spinup			
4	Normal load - spinup			
5	Axial load - springback			
6	Normal load -springback			
7	Axial load - braked roll		П	
8	Normal load - braked roll			
9	Axial load - drift landing			
10	Normal load - drift landing	Main gear at takeoff		
11	Axial load - unsymmetrical braking	weight		
12	Normal load - unsymmetrical braking			
13	Axial load - towing			
14	Normal load - towing			
15	Axial load - turning			
16	Normal load - turning		1b	LGEAR, LGWT

TABLE 34. ARRAY FLOADS IN LCDATA BLOCK (CONT)

LOC	Description		Units	Subroutine Reference
17	Axial load - two-point landing)	1b	LGEAR, LGWT
18	Normal load - two-point landing			
19	Axial load - spinup			
20	Normal load - spinup			
21	Axial load - springback	}		
22	Normal load - springback			
23	Axial load - braked roll			
24	Normal load - braked roll			
25	Axial load - drift landing	Main gear at		
26	Normal load - drift landing	weight		
27	Axial load - unsymmetrical braking			
28	Normal load - unsymmetrical braking			
29				
30				
31				
32			1b	LGEAR, LGWT
3.1				

TABLE 34. ARRAY FLOADS IN LGDATA BLOCK (CONT)

LOC	Description		Uni	its		routi ferenc	
33	Axial load - two-point landing		11	,	LG	EAR,LG	WT
34	Normal load - two-point landing						
35	Axial load - spinup	<u> </u>					
36	Normal load - spinup						
37	Axial load - springback			Ш			
38	Normal load - springback						
39							
40							
41		Nose gear a	at				
42		weight					
43	Axial load - unsymmetrical braking						
44	Normal load - unsymmetrical braking						
45	Axial load - towing						
46	Normal load - towing						
47	Axial load - turning				1		
48	Normal load - turning		11	,	LGI	ear, lg	WT

TABLE 34. ARRAY FLOADS IN LGDATA BLOCK (CONCL)

LOC	Description		Units	Subroutine Reference
49	Axial load - two-point landing		1b.	LGEAR, LGWT
50	Normal load - two-point landing			
41	Axial load - spinup			
52	Normal load - spinup			
53	Axial load - springback			
54	Normal load - springback	Nose gear at		
55		weight		
56				
57			:	
58				
59	Axial load - unsymmetrical braking			
60	Normal load - unsymmetrical braking		1b	LGEAR, LGWT

TABLE 35. WHEEL, TIRE, TUBE, AND BRAKE WEIGHTS IN LGDATA BLOCK

Variable	Description	Units	Subroutine Reference
TTAUX	Weight per aircraft of nose gear tubes and tires	1b	LGEAR, LGWT
TTMAIN	Weight per aircraft of main gear tubes and tires		
WHEELA	Weight per aircraft of nose gear wheels		
WHEELM	Weight per aircraft of main gear wheels		
BRAKES	Weight of brakes	1b	LGEAR, LGWT

*** LANDING CEAR DATA ***

41.50	36.00	11.00	10.00			0.0	0	86		0.0	0 0	0	0.0	0.0	9 6	0	0.0	0.0	0.0	0.0	•	
1 NGSE GEAR LENGTH 2 NOSE GEAR STROKE 3 NOSE GEAR PISTON DIA 4 NCSE GEAR ECCENTRICI	85 NOSE GEAR WHEELS/STRUT 86 STRUT ANGLE (FORE-AFT) 87 NOSE GEAR TIRE OD	NOSE GEAR TIRE	ING WEIGHT SINK SPEED OFF WI LANDING SPEED	LANDING WT LANDING SPEED	LANDING WEIGHT LOAD	CL AT TAKE-OFF WEIGHT	WING AREA	MING	MAIN GEAR WHEEL	GEAR INERTIA	102 MAIN GEAR TIRE WEIGHT	MISCELLAN	NOSE GEAR WHEEL W	NOSE GEAR TIRE WEI	10' HAIN GEAR AL (FORFIATI)	MAIN GEAR AL	O MAIN GEAR NL	I MAIN GEAR AL (T	2 MAIN GEAR NL (T	3 NOSE GEAR AL (F	4 NOSE GEAR NL (FORE	SE GEAR NL (T
	925.17 153.56 991.77	4 0	00	165000.00		0 0	1.00	1.00	1.00	1.60	1 • 00 • 4	0		•	28-00	0.0	0.0	•	0-0	5.0	44.00	•
TAKE-OFF WEIGHT LANDING WEIGHT ABORTED TAKE-CF AIRCRAFT CG AT	AIRCRAFI CG AF LAND AIRCRAFI CG TO GROU MAIN GEAR FUSELACE	NOSE GEAR FUSE DIST BETWEEN S	HEAT TREATMENT OF POISSONS RATIO	FCY MOMINS OF FLASTICITY	DENSITY OF MATERIAL	60 MAIN DEFLECTION INDICATOR	AUXILIARY GEAR	MAIN GEAR WEIGH	DUTER CYL WEIGHT COEF	INNER CYL WEIGHT (DRAG STRUT WT	MAIN SIDE STRUT W	O NOSE DRAG STRUT WT	NOSE SIDE STRUT WI	MAIN	4 MAIN GEAR	5 MAIN GEAR ECCENTRICI	MAIN GEAR WHEELS/STRU	STRUT ANGLE (FORE-AF	B STRUT ANGLE (LAT	79 MAIN GEAR TIRES OF	TOTAL SEAN TIME ATTAL

Figure 54. Sample output from LANDGR of variable landing gear data.

The input data array D (Tables 31 and 32) is placed in common block/LGDATA/ so that the input data may be transferred to subroutines LGEAR and LGWT.

Mass Storage File Records

Mass storage file record 25, which contains landing gear data array D, is read. No mass storage file records are written.

SUBROUTINE LOADS

General Description

Deck name:

LOADS

Entry name:

LOADS

Called by:

LGEAR

Subroutines called:

None

Subroutine LOADS computes the axial and normal loads on the strut from the drag, side, and vertical loads on the wheels.

Variables Input

Variable	Description	Units
CSFA	Cosine of the angle between strut and fore-aft direction	
CSL	Cosine of angle between strut and lateral direction	I
CSV	Cosine of angle between strut and vertical	
DF	Drag (fore-aft) load on wheels	1b
SF	Side (lateral) load on wheels	1b
VF	Vertical load on wheels	1b
· · · · · · · · · · · · · · · · · · ·		

Variables Calculated

Variable	Description	Units
ANG	Angle between strut and resultant load	radians
AXLOAD	Axial load on strut	1b
CRFA	Cosine of angle between resultant load and fore-aft direction	
CRL	Cosine of angle between resultant load and lateral direction	
CRV	Cosine of angle between resultant load and vertical	
PLOAD	Normal load on strut	1b
RLOAD	Resultant load of drag, side, and vertical loads on wheels	1b

SUBROUTINE LG3P

General Description

Deck name: LG3P

Entry name: LG3P

Called by: LGWT

Subroutines called: None

Subroutine LG3P is a three-point interpolation routine. A second degree curve, of the form shown in equation 123, is passed through three points in order to determine the value of Y for a given value of X.

$$\text{YP} = \frac{(\text{XP-X}_1) \ (\text{XP-X}_2) \ \text{Y}_3}{(\text{X}_1 - \text{X}_3) \ (\text{X}_2 - \text{X}_3)} + \frac{(\text{XP-X}_2) \ (\text{XP-X}_3) \ \text{Y}_1}{(\text{X}_1 - \text{X}_2) \ (\text{X}_1 - \text{X}_3)} + \frac{(\text{XP-X}_1) \ (\text{XP-X}_3) \ \text{Y}_2}{(\text{X}_1 - \text{X}_2) \ (\text{X}_2 - \text{X}_3)} (123)$$

Arrays Input

Array (Dimension)	Description
X(3)	Three values of X
Y(3)	Three values of Y corresponding to X(3)

Variables Input

Variable	Description
ХР	Value of X for which a value of Y will be determined

Arrays Calculated

Array (Dimension)	Description
V(9)	Used for temporary storage of elements in equation 1

Variables Calculated

Variable	Description
YP	Value of Y corresponding to XP

SUBROUTINE BMOR

General Description

Deck name:

BMOR

Entry name:

BMOR

Called by:

LGWT

Subroutines called:

None

Subroutine BMOR computes the bending modulus of rupture and the torsion modulus of rupture as functions of the ultimate tensile strength of the material and the ratio of the diameter of the cylinder to the wall thickness.

Variables Input

Variable	Description	Units
DT	Ratio of diameter of cylinder to cylinder wall thickness	ā.
нт	Ultimate tensile strength of material	1b/in. ²

Variables Calculated

Variable	Description	Units
AFB	Scratch variable	
AST	Scratch variable	
BFB	Scratch variable	·
BMRU	Bending modulus of rupture	lb/in. ²
BST	Scratch variable	
CFB	Scratch variable	
CST .	Scratch variable	
TMOR	Tension modulus of rupture	lb/in. ²
x	Diameter-to-thickness ratio	
Z	Ultimate tensile strength divided by 1,000	1b/in. ² X 10 ⁻³

The state of the s

SUBROUTINE LGEAR

General Description

Deck name:

LGEAR

Entry name:

LGEAR

Called by:

LANDGR

Subroutines called:

LOADS

Subroutine LGEAR computes the landing gear loads. The axial and normal loads on the strut are determined for eight load conditions.

The loads for the two-point landing, spinup, springback, and unsymmetrical, braking load conditions are determined at both the takeoff and landing weights for both the main and nose gears.

The loads for the braked roll and drift landing conditions are determined at both takeoff and landing weights for the main gear only.

The loads for the towing and turning conditions are determined at the takeoff weight only for both the main and nose gears.

Labeled Common Blocks

IP (60), which is taken from common block/IPRINT/, indicates whether the landing gear loads will be printed in subroutine LGEAR (Figure 55).

Input data array D is transferred from program LANDGR to subroutine LGEAR in common block/LGDATA/. Array D is described in Tables 31 and 32.

The landing gear loads computed in subroutine LGEAR are stored in array FLOADS, which is placed in common block/LGDATA/. Array LFOADS is described in Table 34.

The wheel, tire, tube, and brake weights computed in subroutine LGEAR are placed in common block/LGDATA/. These variables are described in Table 35.

		WE IGHT	LCAD FACTOR	LANDING SPEED (FT/SEC)	SINKING SPER (FT/SEC)
	TAKE-CFF LANDING	317998.9	1.270	231.8 206.6	6.00
			SANDING GFAR LOADS	8 0 0 0	
		MAIG LAN	MAIN LANDING GEAR	NOSE LANDING GEAR	ING GEAR
		TAKE-OFF	LANDING	TAKE-OFF	LANDING
TWO POINT	AXIAL	04336.	144712. 36178.	12166.	30261. 7565.
SPIN UP	AXIAL NORMAL	62425. 48667.	125775. 96847.	12166.	28642.
SPRING BACK	AX IAL NORMAL	64336. 42917.	144712.	12166.	30261. 19691.
BRAKED ROLL	AXIAL	238459.	231749.		
DRIFT LANDING	AX 1AL NORMAL	32168. 25735.	72356. 57885.	27	·
UNSYS. BRAKING	AXIAL NORMAL	196955.	157722.	86751. 35595.	73738.
TOWING	AXIAL	215949.		45101. 71550.	
TURNING	AXIAL	390368. 195184.		45101. 22550.	
Fig	Figure 55.	Sample output	from LGEAR of la	Sample output from LGEAR of landing gear loads.	

ED

Variables Calculated

Variable	Description	Units
A1	Fore-aft angle of strut	radians
A2	Lateral angle of strut	radians
CSFA	Cosine of angle between strut and fore-aft direction	
CSL	Cosine of angle between strut and lateral direction	
CSV	Cosine of angle between strut and vertical	
DF	Drag (fore-aft) load on wheels	1b
DIST	Distance from main gear to nose gear (fuselage stations)	in.
FDSU	Maximum spinup drag load	1b
FNGML	Element in equation for TVFACT	
FNS	Element in turning load equation	
FTOW	Tow load	1b
FVSU	Vertical load at time TSU	1b
I	Loads index:	
	<pre>I = 1 - Main gear at takeoff weight I = 17 - Main gear at landing weight I = 33 - Nose gear at takeoff weight I = 49 - Nose gear at landing weight</pre>	
K	Weight index: K = 1 - Takeoff weight K = 2 - Landing weight	

Variable	Description	Units
L	Component index:	
	L = 1 - Main gear L = 2 - Nose gear	
N	General index	
N02	General index	
SF	Side (lateral) load on wheels	1b
TSU	Time required for wheel circumferential velocity to reach ground velocity	sec
TSUFAC	Element in equation for TSU	
TV	Time required to develop vertical reaction	sec
TVFACT	Element in equation for TV	
VF	Vertical load on wheels	1b
WITAUX	Weight per wheel of nose gear wheel, tube, and tire	1b
WITMAI	Weight per wheel of main gear wheel, tube, and tire	1b

Arrays Calculated

Description	Units
Distance from CG at takeoff to main gear (fuselage stations)	in.
Distance from CG at landing to main gear (fuselage stations)	in.
Distance from CG at takeoff to nose gear (fuselage stations)	in.
	Distance from CG at takeoff to main gear (fuselage stations) Distance from CG at landing to main gear (fuselage stations) Distance from CG at takeoff to nose gear

and the state of t

Array		
(location)	Description	Units
B(2)	Distance from CG at landing to nose gear (fuselage stations)	in.
DELTIR(1)	Deflection of main gear tires	ft
DELTIR(2)	Deflection of nose gear tires	ft
FIW(1)	Inertia of main gear wheels, tires, tubes, and brakes	slug-ft ²
FIW(2)	Inertia of nose gear wheels, tires, and tubes	slug-ft ²
FNG(1)	Load factor at takeoff weight	
FNG(2)	Load factor at landing weight	
FVMAX(1)	Maximum vertical load at takeoff weight	1b
FVMAX(2)	Maximum vertical load at landing weight	1b
GRWT(1)	Takeoff gross weight	1b
GRWT (2)	Landing gross weight	1b
OD(1)	Outside diameter of main gear tires	ft
OD(2)	Outside diameter of nose gear tires	ft
PRAD(1)	Rolling radius of main gear tires	ft
PRAD(2)	Rolling radius of nose gear tires	ft
STROKE(1)	Effective stroke at takeoff weight	ft
STROKE(2)	Effective stroke at landing weight	ft
VL(1)	Landing speed at takeoff weight	ft/sec
VL(2)	Landing speed at landing weight	ft/sec

SUBROUTINE LGWT

General Description

Deck name:

LGWT

Entry name:

LGWT

Called by:

LANDGR

Subroutines called:

BMOR, LG3P

Subroutine LGWT computes *he weight of the main landing gear and the weight of either the nose gear or the tail wheel.

The total landing gear weight is the sum of the weights of the inner cylinder, outer cylinder, axle, bogie, drag strut, side strut, oil, wheels, tires, tubes, brakes, and miscellaneous components. Weight summary results are printed by this routine (Figures 56 and 57).

Labeled Common Blocks

Input array D is transferred from program LANDGR to subroutine LGWT in common block/LGDATA/. Array D is described in Tables 31 and 32.

The landing gear loads which were stored in array FLOADS in subroutine LGEAR are transferred to subroutine LGWT in common block/LGDATA/. Array FLOADS is described in Table 34.

The wheel, tire, tube, and brake weights are transferred from subroutine LGEAR to subroutine LGWT in common block/LGDATA/. These variables are described in Table 35.

The weights and fuselage stations of the main gear and either the nose gear or tail wheel are stored in array FDAT in labeled common block/FDATT/. These variables are described in Table 33.

MAIN LANCING GEAR WEIGHTS (PCUNDS)

365.8	156.0	501.6	541.9	369.1	0.0	1146.1	1403.2	2823.5	751.9	605.3	0.0	8366.3
GUTER CYLINDER	PISTON	AXLE	. 016	DRAG STRUT	SIDE STRUT	WHEELS	TIRES	MISC (CALC.)	BRAKES	8061E	MISC (INPUT)	TOTAL

MAIN LANDING GEAR DESIGN DATA		DESIGN LOAD CCNDITION	AREA (SQ IN)	DIAMETER TO THICKNESS RATIO	BENDING MODULUS OF RUPTURE	TORSICHAL MODULUS OF RUPTURE
OUTER CYLINDER	T0P	16	18.09	26.65	279844.	116402
	BOTTOM	9 7	9.11	50.00	237500	98514
PISTON (20 PCT OF LENGTH FI	FROM AXLE)	7	7.52	20.00	237500.	98514.
PISTON DIAMETER (INCHES)	11.05		- BELOW TRUNION POINT	ON POINT		54.3
AFT DEFLECTION (INCHES)	2.16	0 - 93	UTBCARD (I	NBOARD) FROM	TRUNION PO	
SIDE DEFLECTION (INCHES)	0.0	ı	FT (FORWAR	AFT (FORWARD) FROM TRUNION POINT	TON POINT	600
ANGLE OF THIST (RADIANS) 0.0	0.0					

Figure 56. Sample output from LGWT of nose gear weight summary.

NOSE LANDING GEAR WEIGHTS (POUNDS)

	TORS IONAL MODULUS OF RUPTURE	113959. 103395. 98514. 98514.	34.9 JINT 0.0
0.0 142.7 174.4 207.1 674.6	BENDING MODULUS OF RUPTURE	249940. 237500. 237500.	FROM TRUNION PC TRUNION POINT
	DIAMETER TO THICKNESS RATIO	28.90 41.07 50.00 50.00	BELOW TRUNION POINT CUTEOARD (INBOARD) FROM TRUNION POINT AFT (FORWARD) FROM TRUNION POINT
SICE STRUT WHEELS TIRES MISC (CALC.)	AREA (SC IN)	6.38 4.34 2.52	BELOW TRUNION POINT CUTEDARD (INBOARD) AFT (FORWARD) FROM
000rs	DESIGN LOAD CONDITION **	4422	1 1 1
R 43.2 18.9 18.7 46.5		TOP MIDGLE BOTTOM FROM AXLE)	6.63 1.76 0.0
GUTER CYLINDER PISTON AXLE CIL DRAG STRUT	ESIGN BATA	OF LENGTH	(INCHES) (INCHES) (INCHES) (RACIANS)
CUTE PISTO AXLE CIL DRAG	NOSE LANDING GEAR DESIGN GATA	DUTER CYLINDER MIDDLE BOTTOM PISTON (20 PCT OF LENGTH FROM AXLE)	PISTON DIAMETER AFT DEFLECTION SIDE DEFLECTION ANGLE OF TWIST
2	NOSE LAN	OUTE	PIST AFT SIDE ANGL

** DESIGN LOAD CONDITION INDICATORS
TAKE-OFF WEIGHT LANDING WEIGHT

18	20	22	54	56	28		
7	4	•	∞	10	12	14	16
					BRAKING		
TWC POINT	SPIN UP	SPRING BACK	BRAKED ROLL	DRIFT LANDING	UNSYMMETRICAL	TOWING	TURNING

(IF THE DESIGN LOAD CONDITION INDICATORS ARE ALL 0, THE DESIGN LOADS WERE GIVEN IN THE INPUT DATA) Sample output from LGWT of main gear weight summary. Figure 57.

Variables Calculated

Variable	Description	Units
ACM	Constant in piston diameter equation	·
AREAC	Area of cylinder section	in. ²
AREA2S	Area of section 2 from previous pass in deflection loop	in. ²
AXLGTH	Length of axle	1b
AXLOAD	Total load on axles	1b
MOA	Constant in piston diameter equation	
BD	Diameter of bogie	in.
BMAX	Bending moment on axle	in1b.
8\B	Bending moment on bogie	in1b.
BMFACT	Ratio of deflection at bottom of strut to deflection at section 2	
BMOD	Bending modulus of rupture for axle	lb/in. ²
BMOFR	Bending modulus of rupture at cylinder section	lb/in. ²
BMR	Resultant bending moment	in1b.
EMY	Fore-aft bending moment	in1b.
BMYDZ	Design fore-aft bending moment at section 2	in1b.
BMZ	Lateral bending moment	inlb.
BMZDZ	Design lateral bending moment at section 2	inlb.
BOGL	Length of bogie	in.
BOGWI	Weight of bogie	1b.

Variable	Description	Units
COSTHE	Cosine of angle between strut and vertical	
DEFLI	Deflection indicator	
DEFLP	Angular deflection at bottom of strut	radians
DEFLY	Fore-aft deflection at bottom of strut	in.
DEFLZ	Lateral deflection at bottom of strut	in.
DELTA	Weight coefficient	
DELTYR	Deflection of tires .	in.
DIAAX	Diameter of axle	in.
DIADZ	Diameter of cylinder at section 2	in.
DIAM	Diameter of cylinder	in.
DLFLNG	Length from section to ground for drift landing condition	in.
DOTINT	Interpolated value of diameter-to- thickness ratio	
DOVT	Final value of diameter-to-thickness ratio	-
DP	Diameter of piston	in.
DSF	Weight coefficient for drag strut	
DSTRWT	Weight of drag strut	1b
ECCET	Eccentricity	in.
FIG	Moment of inertia at section 2	in. ⁴
GMO D	Modulus of rigidity	lb/in. ²
нг	Ultimate tensile strength	lb/in. ²

Variable	Description	Units
I	Section subscript	
J	Loads subscript	
L	Loads index	
LOOP	Deflection loop counter	
М	General index	
N	Index in diameter-to-thickness ratio search	
NTRIP	Component indicator (1 = main gear, 2 = nose gear)	
ODTYR	Outside diameter of tires	in.
PASS	Ratio check counter	
PI	Ratio of circumference of circle to diameter	
RADPD	Element in piston diameter equation	
SMALA	Element in piston diameter equation	
SMALB	Element in piston diameter equation	
SSF	Weight coefficient for side strut	į
SSTRWT	Weight of side strut	1b
STROKE	Stroke of piston	in.
STRUTS	Number of struts	
SW	Static load on each strut	1b
TAILWT	Weight of tail wheel	1b

Variable	Description	Units
TMAX	Torsion moment on axle	in1b.
TMB	Torsion moment on bogie	in1b
TMOD	Torsion modulus of rupture for axle	lb/in. ²
TMOFR	Torsion modulus of rupture at cylinder section	lb/in. ²
TOTAL	Total weight of main or nose gear	1b
TOTCAL	Total calculated weight of landing gear structure	1b
TOTLNG	Axle to trumnion length of gear with piston extended	in.
TOTSTW	Total calculated weight	1b.
ТРНІ	Torsion bending moment	inlb
TPHIDZ	Design torsion bending moment at section 2	in1b
VOLAX	Volume of axle	in. ³
VOLOIL	Volume of oil	in. ³
WBIT	Weight of brakes, wheels, tires, and tubes	1b
WHEELS	Number of wheels per strut	
WIDTH	Width of tires	in.
WTAXL	Weight of axle	1Ъ
WTBRK	Weight of brakes	1b
WTIC	Weight of inner cylinder	1b

Variable	Description	Units	
WTMISC	Calculated miscellaneous weight	1b	
WTOC	Weight of outer cylinder	1b	
WTOIL	Weight of oil	1b	
WITT	Weight of tubes and tires	1b	
WIWHIL	Weight of wheels	1b	
XAWTBB	Fore-aft distance from trunnion to CG of wheels, tires, tubes, and brakes	in.	
xcg	Fore-aft distance from trunnion to CG of main or nose gear	in.	
XCGDS	Fore-aft distance from trumnion to CG of drag strut	in.	
XCGIC	Fore-aft distance from trunnion to CG of inner cylinder	in.	
XCGOC	Fore-aft distance from trunnion to CG of outer cylinder	in.	
XCGOIL	Fore-aft distance from trunnion to CG of oil	in.	
XCGSS	Fore-aft distance from trunnion to CG of side strut	in.	
XFB	Bending modulus of rupture for bogie	1b/in. ²	
XFT	Torsion modulus of rupture for bogie	1b/in. ²	
YAWTBB	Lateral distance from trunion to CG of wheels, tires, tubes, and brakes	in.	
YCG	Lateral distance from trunnion to CG of main nose gear	in.	
YCGDS	Lateral distance from trunnion to CG of drag strut	in.	

Variable	Description	Units
YCGIC	Lateral distance from trunnion to CG of inner cylinder	in.
YCGOC	Lateral distance from trunnion to CG of outer cylinder	in.
YCGOIL	Lateral distance from trunnion to CG of oil	in.
YCGSS	Lateral distance from trunnion to CG of side strut	in.
ZAWTBB	Vertical distance from trunnion to CG of wheels, tires, tubes, and brakes	in.
ZCG	Vertical distance from trunnion to CG of main or nose gear	in.
ZCGDS	Vertical distance from trunnion to CG of drag strut	in.
ZCGIC	Vertical distance from trunnion to CG of inner cylinder	in.
zcgoc	Vertical distance from trunnion to CG of outer cylinder	in.
ZCGOIL	Vertical distance from trunnion to CG of oil	in.
zcgss	Vertical distance from trunnion to CG of side strut	in.

and the second second second

Array (location)	Description	Units
ANGLE(1)	Fore-aft angle of strut	radians
ANGLE (2)	Lateral angle of strut	radians
AREAN(1)	Final area of section 1	in. ²
AREAN(2)	Final area of section 2	in. ²
AREAN(3)	Final area of section 3	in. ²
AREAN(4)	Final area of section 4	in. ²
AS(1)	Clyinder area required for strength for DOT(1)	in. ²
AS(2)	Cylinder area required for strength for DOT(2)	in. ²
AS(3)	Cylinder area required for strength for DOT(3)	in. ²
DIA(1)	Outside diameter of strut for DOT(1)	in.
DIA(2)	Outside diameter of strut for DOT(2)	in.
DIA(3)	Outside diameter of strut for DOT(3)	in.
DOT(1)	First assumed value of diameter-to- thickness ratio	
DOT (2)	Second assumed value of diameter-to- thickness ratio	
DOT (3)	Third assumed value of diameter-to- thickness ratio	
DOVRTN(1)	Final diameter-to-thickness ratio of section 1	
DOVRTN(2)	Final diameter-to-thickness ratio of section 2	

Array (location)	Description	Units
DOVRTN(3)	Final diameter-to-thickness ratio of section 3	
DOVRIN(4)	Final diameter-to-thickness ratio of section 4	
FLNGTH(1)	Length from axle to section 1	in.
FLNGTH(2)	Length from axle to section 2	in.
FLNGTH(3)	Length from axle to section 3	in.
FLNGTH(4)	Length from axle to section 4	in.
GRWT(1)	Takeoff gross weight	1b.
GRWT (2)	Landing gross weight	1b.
LODIDN(1)	Design condition identification for section 1	
LODIDN(2)	Design condition identification for section 2	
LODIDN(3)	Design condition identification for section 3	
LODIDN(4)	Design condition identification for section 4	
PFB(1)	Bending modulus of rupture at section 1	lb/in. ²
PFB(2)	Bending modulus of rupture at section 2	lb/in. ²
PFB(3)	Bending modulus of rupture at section 3	lb/in. ²
PFB(4)	Bending modulus of rupture at section 4	lb/in. ²

Array (location)	Description	Units		
PFST(1)	Torsion modulus of rupture at section 1	lb/in. ²		
PFST(2)	Torsion modulus of rupture at section 2	lb/in. ²		
PFST (3)	Torsion modulus of rupture at section 3	lb/in. ²		
PFST(4)	Torsion modulus of rupture at section 4	lb/in. ²		
PHI (1)	Angular deflection at section 1	radians		
PHI(2)	Angular deflection at section 2	radians		
PHI(3)	Angular deflection at section 3	radians		
PHI (4)	Angular deflection at section 4	radians		
RAT (1)	Ratio of strength area to geometric area for DOT(1)			
RAT (2)	Ratio of strength area to geometric area for DOT(2)			
RAT(3)	Ratio of strength area to geometric area for DOT(3)			
Y(1)	Fore-aft deflection at section 1	in.		
Y(2)	Fore-aft deflection at section 2	in.		
Y(3)	Fore-aft deflection at section 3	in.		
Y(4)	Fore-aft deflection at section 4	in.		
Z(1)	Lateral deflection at section 1	in.		
Z(2)	Lateral deflection at section 2	in.		
Z (3)	Lateral deflection at section 3	in.		
2(4)	Lateral deflection at section 4	in.		

APPENDIX B

LANDING GEAR MODULE

FLOW CHARTS AND FORTRAN LISTS

1 st come o you the

TABLE OF CONTENTS
FOR
AUTOFLOW CHART SET

PARE I

CHART TITLE - INTRODUCTORY CONCINTS

OWNT TITLE - PROCESURES

10000131 2.02 50

(000013) 2.02 (000013) 2.03

10000101 2.00 5001

(000107) 2.17 50/2 (000017) 2.05 (000113) 2.20 5

10001131 8.20 3

OWRT TITLE - NON-PROCEDURAL STATOLENTS

CHART TITLE - INTROJCTORY CONCINTS

OVER TITLE - SUPPORTING DISTRICT, NT, DISV, THOSE

(000130) 0.01 0/07 (0007(0) 25.00-X (0000/1) 20.01-X (00000) 20.00-X (000016) 20.03-X

QUET TITLE - INTRODUCTORY CONCURS

OWNT TITLE - SURROUTING LOCAR

10001451 0.01 LEEAR (000100) 2:10-X 10001671 0.01 00 (800101) 0.03 (000179) 0.01 300 (80010-) 0.63 (000100) 9.05 310 (000105) 9.00 200 10001701 9.00 (000100) 0.07 300 (800)821 9.85 10001931 9.00 330 (000100) 9.07 10001979 9.10 910 -----10001051 9.00 (800000) 9.11 (80000-) 18.01 630 (000000) 10.02 D10 (0000002) 9.11 (800215) 10.05 650 (8002001 9.18 (800207) 19.81 10002151 10.05 336 (000215) 18.05 (000215) 10.07 (000219) 10.00 337 (000000) | 10.10 330 10000201 10.11 (000000) 10.10 (0000EN) 11.81 330 10002101 10.00 1000051 11-02 2-0 (0000075) 11.02 (000025) 11.03 10002301 11.05 345 (000021) 10.11 (000230) 11.07 (000237) 11.00 (000237) 11.00 302 (0000740) | 11.11 305 10001001 9.07 (000557) 11.12 370 (0000) 11.11 (00000) 11.19 575 (00000h) 12.00 10000071 11-15 300 (00000) 11.19 (0002-3) 12.01 200 (0000NO) 11.11 10002-71 12.05 300 (0002%) 12.02 (80001-0) 12.01 201 10002711 12.05 302 (000000) 1:-16 (000000) 11.16 100027c1 12.07 303 10002761 13.01 304 (000274) 12.07 (00000) 13.02 200 10002741 12.07 (000000) 13.0- 510 (000M0) 15.16 (00000) 13.05 1000-131 16.07 (000001) 13.00 110 10003101 13.10 400 (000312) 13.11 102 (000300) 13.00 10000191 13.12 101 10003(1) 13.10 (000300) 13.15 105 (000000) 13.16 NO 10003101 13.13 10000501 13.17 120 10003211 13.15

(000309) 13.17

10003271 13.10

(000000) 13.10 13:

10003011 13.00 135

TABLE OF CONTENTS NO REFERENCES 88/87/7h ---------REFERENCES (SOURCE SEQUENCE NO. 440 PARE/SOLL) 1000 10.01 1000000 10007-61 13.86 N. . . . 10003001 15.05 P. 65 530 15.01 130 (888 Pub) 13.85 15.00 945 15.00 446 15.10 WG (000307) 15.11 190 (404306) 15.40 (000300) 19.12 492 (000300) 15.10 10001011 16.01 101 10003061 15.10 1000-021 (000300) 15.11 14.40 ---1000001 15.12 1000+131 16.07 400 10003061 19.09 10002001 19.00 (000200) 19.07 1000-161 16.00 16.00 100 1000-101 1000-221 16.18 500 (000-19) 16.00 (000-23) 16.11 962 (000-23) 16.11 1800-231 16.12 10001131 16.17 93 (00016) 16.00 (000) 101 16.00 10001111 16.16 990 (000:00) 17.85 1000-061 16.00 10001571 1000-061 10.23 16.65 711 (800-98) 16.23 (000-00) 10.25 712 17.01 713 1000-061 10.23 1000-001 16.23 1000-001 17.00 719 (000-05) 10.23 17.63 715 (888/86) 16.23 (800-72) 17.00 716 (880-75) 17.65 717 (000-00) 16.83 10001051 16.23 (880-70) 17.65 710 (000-00) 16.25 (800-01) 17.67 731 (000-02) 16.25 (000+05) 17.01 (000+7+) 17.0+ (000-00) 17.13 735 (800-00) 17.00 (010171) 17.03 1000-001 17.00 17.19 730 1000-771 17.05 1000001 (000100) 17.85 718 1000-001 17.12 (000-03) 17.10 (00000) 11.15 (000001) 17.85 1000 (000%3) 16.17

GUST TITLE - HEN-PRECEDURAL STATEFERTS

OWN TITLE - WITHOUTERY CONCUSTS

DUST TITLE - SUSTRICTIVE LOST

(000010) 20.01 LOAT 1000111) 2.19-E (0000-6) 20.05 1050 (800057) 21.01 2001 (00000) 20.00 ----(800061) 21.03 2003 (000007) PL-01 (000002) 21.0- 300-(PARS) 21.05 2005 (000001) 21.03 21.05 2000 (886188) 21.87 2005 (000005) 21:05 10000001 21.02 (000070) 21.00 2007 (80000) 21.00 (000077) 82.01 1005 (800001) 20.00 (000057) 21.05 22.02 2000 10005701 21.10 (800001) 82-83 1070 (000001) 82.03 -10005121 M.12 1074 10011271 31.12 10000161 22.19 10000191 82.16 (0000191 M. 15 1071 (000523) 87.17 1070 (000700) 80.00 1000051 22.10 10007731 88.19 10000-31 25.01 1000 (0000)11 82.20 23.CZ (800771) 88.13 10000-71 #3.05 #010 10000021 85.0× 8015 (0000-0) 85.02 10000171 23.03 100000 B.G. 8016 83.07 1001 (8000-7) 23.03 10000001 25.00 1000 23.10 BESS (000003) 23.00 (0000TE) 23.11 8000 (000007) 23.05 (000070) 25.12 2030 (00000) 23.00 10000011 27.15 3001 (00000) 65.15 2000 10000001 85.16 3007 (00000) 85.13 10000011 85.19

583

- Santi

C470 10							T SET - SEEP	. 40 PAGE/800
10000001	83.17 PM	~ 0	(000005)	P.01				
10000031	83.10 RE	100						
10000031	83.10 83.81 84	_	(000700)					
10007001	83.88 86			50. IU	1000775	80.63		
10007011	23.23 20	76						
1000001	23.23 25.01 20		(000701)					
(000701)	25.01 20		(000000)					
10007051	85.00 M	61						
10007051	70.00 M	_	10007051					
(000716)	83.00	-	(6007)7)					
10007171								
(00070)	25.11 30 25.12 30		10007001	65 .10				
(000702)	5.13 M							
(000703)	25.15 30		(000721)	1117				
(000705)	25.16 30 25.16 30		(000702)	25.13				
(000705)	<i>8</i> 3.16	••	(000706)	89.17				
(000730)	85.10 M		(000723)	25.19				
(000733)	85.21 3M	51	(000733)	-				
10007371	86.01 300		10007021		(000723)	25.15		
	86.03 M		(190730)					
	3.0 M		16.07011	25.11				
10007001	# · · · · ·		(0007-6)	86.0				
10007061			10007531	26.07				
(000702)	85.10 MI							
	20.13 330		(000753)	86.87	(000751)	* **	(000700) 25.	ш
	20.15 231	177	10000-11					
(000770)	27.01 WE		10007761					
(0000)*)	27.03 901		10000011		10000071	80.11		
10000191	27.00 500		(000776)					
1000021	27.07 904 20.01 401		(000002)		(000012)	88.19		
10007913	80 PM	17						
10007021	# . # . * #		100070-1	80.07				
	# W	-		27.00				
	10 IS 101	-	******					
10000111	20.13 WI	3						
	80.15 SHI							
	80.01 903							
	29.65 901 29.67 900			27.07				
	29.12 900							
	29. P 900							
	29.15 900 29.19 911	_	(00000)					
	29.29 512		*****					
(000000)	20-22 910		-					
(000000)	D.D 512							
10000001	20.00 SIZ							
10000111	20.01 513		10000001					
10000101	39.65 GGS		(000000)	44-67				
10000101	20.65		******					
10000001	30.05 PM		-					
(00000)	31.01 70		*****		10000001	3 .00		
(000075)	31.19 519		******					
10000771	31.15 500		10000771	N. 15				
(00000)	31.17							
******	31.17		-1000000+	24.10				

-----ATTELON CHAIT TET - SEEP PAGE 1 CARD ID PARE/BOX NAC ------(00000) 31.10 Set 10000771 31.15 1000001 31.30 5003 10010011 34.01 010 (000002) 31.19 1001000 M.D. 015 10010.31 22.07 016 10010111 30.00 10010171 22.00 010 10010111 22.05 10010001 22.00 000 (001015) M.87 10010201 20.11 10010-01 20.10 5703 (001000) 20.13 S70-10010301 32.11 10010001 M.IS 10 10010021 22.13 10010011 33.01 80 (0010M2) 37.13 10010001 33.03 30 10010001 22.16 10011201 33.01 0000 (001000) 23.03 (00100+) 23.11 (001070) 23.06 1206 10010001 33.03 10010701 33.05 \$346 (801870) 33.66 10010701 23.07 1207 10010071 31.01 M11 10010701 33.00 100 (002) 31.05 5100 10010021 D.03 10010021 31.01 10011111 Dr.00 5103 (001107) 31.00 10011191 20.10 5105 10011101 30.13 10011001 3-13 5100 10011071 Dr.00

OWN TITLE - HON-PROCESURAL STATEMENTS

OURT TIRE - HARBUCTORY CONDUCTS

CHART TITLE - SUBMOUTHE LESPIN, Y, IP, YPI

(001790) 37.01 LG3P (000730) 85.19-X (00°/37) 85.01-X

(001153) 37.05 00

GHAT TIRE - HON-PROCEDURAL STATDENTS

BUST TITLE - IMPROVETORY CONCURS

OURT TIRE - SURBATHE LONGICOV, CWA,CEL, W.W.W. W. MLOW, ALDROI

(001102) 90.01 LAGS (00030) 13.07-X (000337) 13.07-X (00030) 19.03-X (00030)

the second second

PROGRAM FLOW CHARTS

OF

LANDING GEAR MODULE

03/87/7A

AUTOFLEN CHART SET - SHEEP LANDING SEAR HODILE

PAGE

CHART TITLE - INTRODUCTORY CONTENTS

The second second

CHART TITLE - PROCEDURES

CONTRA ALBATA/DI 1161 ,/LONGSIGGI ,TIARI,TINAIN,IMEELA,IMECLII,GRANES

CHRT TITLE - HON-PROCESURAL STATCHENTS

PRODUCT LABOR

```
COPPEN / | PRINT/ | PIGO
 FEBRATISMI, THE THEFT WHIMLE LABORS SEAR DATA ***, ISK.
   2140 LABOR - 191901 **//
   101,301 46 TAKE-OFF IG 1017
   ----
                                    J12.2/
   16K,38H 47 LANDING ICIONT
   ----
   101.304 NO ABORTES THE-OT SELTANT .FIE.E.
   'OK, 30H GS HOSE GEAR PISTON DIMETER ,FIE.E/
   .S.SIR, TO-DAT TA SO TRADRIA OF IME, IDE
   18.8/1, YTISIRNIZED RAD 2008 40 14E, 201
   LOC. THE SE ALECTIFIE OF AT LABOUR
                                   .F12.2.
   1611,30H 65 HOSE GEAR HEELS/STRAT
  IGE, 201 SI AIRCRAFT CO TO GROUP
                                   J12.2.
   SEC. 301 OF STOLE WOLE (COE-MT)
                                   512.2/
   101.304 SE HAIN GEAR PURLARE STATION,FIZ.Z.
  16K.20H 87 HOSE SEAR THE SO
                                   $12.2/
  10K, 75H SS HORE GEAR FURELAGE STATION,FIZ.Z.
  -----
                                   J12.2/
  101,304 to DIST SCREEN STRATS
                                   £12.2.
  101,304 00 TAKE-OFF IEION SINK SPEED,F12.21
FORMAT (
  10K,30H 95 HEAT THEATHENT OF HATERIAL FIZ.Z.
  181.301 SE LAIGHE HEIGHT SHK STED ,FIZ.2/
  101,301 96 POISSON BATIO
  101,201 91 TAKE-GIT MT LADING SPEED ,F12.2/
  10K.304 57 FEV
   18.301 SE LAIGHS IN LAIGHS SPEED ,F12.2/
  101,301 SO HOBILUS OF CLASTICITY FIE.E.
  MILTON SS TANE-OFF MT LONG FACTOR JE 12.2/
  ICH. JOH SO SEDGITY OF HATERIAL
  SOK, 304 DE LABORIS METONT LONG FACTOR, F12.2/
  101.304 GO MAIN BEFLECTION HOICATOR FIZ.Z.
  161.301 95 CL AT TAKE-OFF IE 1017 .F12.2/
  HOR, 304 SI MINE BETLECTION INDICATOR FIZ.2.
  101,304 95 CL AT LACHS 1E1017
  HOLDER OF AUTOLIANY GEAR HOLGARDE FIELE.
  104,304 97 MING ATEA
  16K.30H 63 MAIN GEAR HEIGHT COEFF F12.2.
  ME. 304 GO MIND LIFT CONTICIENT
                                   (5.51%
PERMIT
  SOK, 30H ON HOME GEAR HE HOST COURT FIE.D.
  HER, SON OS OUTER C'IL HE HOTT COETT FIE.E.
  HER, BEHOS HAIN GEAR WEEL HEIGHT
                                   J12.2/
  -----
  MEL STOUGH MAIN GEAR INCHTIA
                                   $12.21
  16K, 30H 67 606HE HE IGHT CECTT
  ICH, SONICE MAIN CEAR TIRE IEIGHT
                                  $12.2/
  101.301 00 MAIN DIAG STRUT UT COUTT .F12.2.
  ----
                                   J18.2/
  LOW, 30H GO MAIN SIDE STRUT MT COOTT .FIZ.Z.
  ION, 30HIO- MISCULLARGUS ICIOAT
  10K,30H 70 HOSE BAS STRUT HT COEFF ,FIZ.Z.
  15.517. THOISH ACED MADE SERIOR .F12.2/
  10K,204 71 MOSE SIDE STRUT MT COCTT .F12.2.
  18.81%, THE 34 2017 PAGE 2008 SEINGE, MD1
  ----
 101.30407 HAIN GEAR AL (FORE-AFT) .F12.2)
PROMI
 HER, 204 75 PANN CEAR STREET
                                  .512.2.
```

The same of the sa

CHART TITLE - NON-PROCEDURAL STATEMENTS

1011, 201105 MAIN CEAR NO. 1FORE-AFT1 ... F12.2/ 101,304 To MAIN GEAR PISTON BLANETER ,FIZ.Z. 101.301100 PAIN GEAR AL IORIFT LAGS ,F12.2/ IGH. 30H TO MAIN GEAR ECCENTRICITY ,FIZ.2. 101,30H16 MAIN 6EAR N. 10RIFT LAD! ,FIZ.Z/ .512.2, TURNELSON READ NAME OF 160,2001 101,201 77 STRUT MINE IFORE-IFT1 .F12.2. 161,201112 MAIN GEAR AL (TARHIND) .F12.2/ S.S. TO STRUT MILE ILABERAL! ,FIZ.Z. 101.30H 13 HOEE GEAR AL HORE-MT1 .F12.2/ 1011,301 70 HAIN GEAR TIRES 60 .512.2, 10K.20H19 HOSE GEAR HE HOSE-AFT) ,F12.2/ .5.51%, HTGH 3917 RAD HAM 06 HGT. 101,304 IS NOW CEAR AL (TARNING) ,F12.21 15.517, (2011/05.11 JE 06.39 3031 811/05.113.2)

83/87/Th AUTOCLAN CHART SET

GURT TITLE - INTRODUCTORY COPERTS

PAGE 07

ALIEN/P

QUAT TITLE - INTRIBUCTORY CONCENTS

dia a the way

CHARL TITLE - DESCRIPTION LAND

- Land

OWER TIRE - BARBUTHE LIELE

CHART TITLE - SUBMOUTINE LICER

CHART TITLE - SUBSCUTINE LIEAR

his hall property and a state whether the secretaries in the section of the contract of the section of the

CHART TITLE - HON-PROCESURAL STATEMENTS

21

127

COURS ACOMINATE HELP PLANSHOL THAN THAN HOLLA HELLI BRACS COOK / IPRINT / IP (00) --------(SIRITADE, (SIGNAL, SIGN, ISMA) 1000ELINES (5) 7470, (5)0, (5)4 1012(3)10 PERMIT HIT , BOX , JOH! - LEE/R - 191661 **// TER, I DE MONS SPEED, ST. I DE HKING SPEED/ Diff. BOE FORT, NX, 1 HELOID FACTOR, DIF, BHFT/SEC1, 72, BHFT/SEC1// ##L,###E-## ,F10.1.F11.3.F13.1.F15.2/ 231,04,0000 ,F10.1,F11.3,F13.1,F15.2//// PROMIT - NEW, HOLANDING BEAR LONDS!/ DAR, I ROMAIN LANDING BEAR, \$1,1700E LABOS \$28//221,04ME-677,511,74,MONS,611, ORME-OFF, SK, TLMOIM) F6041110,7c,9th0 F611f1 700001 (HO,71,740*H UP) 75 F00042 (100, 74,) 100FR105 BACK) FROMFIND, TK, I HERNED ROLL FEBRATING, 7K, 13 CRIFT LADING POTAL IND. TH. PHOLOTS. GLACIES FEBRAT (140 , 74 , 44104146) FEBRUAR (148, 71, 74TUD0116) F8504 ()** ,582,504(A.) FEBOAT (100-,20K,F9.0,2K,F9.0,5K,F9.0,2K,F9.0) PORNAT (22E, GHOSTINL)

F85042 (14+ , 20K, F9.0, 17K, F9.0)

88-97/Th AMERICAN DUST ET - DEEP LANGUE SEAR MIDLE FASE IN

CHART TITLE - IMPRODUCTION CONCINTS

CONTRACTOR COM

DIST TIME - SURDITIE LOST

GUST TIRE - SUBMITTE LOW

03/27/Th

AMERICA CHES SET - SEEP LABORS SEAS MINELE

MARK AN

CHART TITLE - BARROWINE LONG

of the first of the

1 - Dietaria

OVER TITLE - SUBSCITUTE LOUI

OVER TITLE - SUBSECTIVE LOUT

OWNT TITLE - SUBMOUTINE LONG

a. mail


```
COORS /FRATT/ FRATIGOT
                 ISINGO, (EIAIG, (PHIROLT) IDIBIDIO
                 -
                 SHORIGH VISI
                 ---
                 DIFERENCE MEANING
                 DIFERSION
                 BUTHELON OFFICE
                 ----
              FORMATINI, NOR, BHOMAIN LANDING CEAR HE SOUTS (POLICE), 25K,
                       ---
 OLI FORMATCHO, MELLIMOUTER CYLINGER, SK.FO. 1/46X, GP 1570H. 11X, FO. 1/
                     46K,46MLE.13K,FB.1/ 46K,340KL.15K,FB.1/
                      48K, 1948A6 STRUT, 7K,FB. 17 46K, 194616E STRUT, 7K,FB. 17
                     NOT. DOLLER, 112, FB. 17 NEW, SHITTES, 124, FB. 17
                       WER, IBMISC ICALC. J.SK.FO. II
              FORMATINEN. INCOMES. 11X.FR. 1746X.SHOOSIC. 12X.FR. 17
8111
                      48K, IBMISC (INFUT), SK,FB. 11
                FROMFISHE, NOR, DIRECTE LANDING CEAR RESORTS (POLACE), 25K.
 912
                      ---
                FERNAT ( 148, 45K, 9476TAL , 12K, FB. 1/ )
                FERNATI ING, 71, FERNAIN LANDING BEAR DESIGN BATAL
817
                FORWATCHIO, TH, PROCOCE LANGUAGE CEAR GESTON BATAN
                FEBRUAR UNIVERSE DECEMBER DE LA COMPANION DE LES LA COMPANION DE LA COMPANION 
                    31.9/10/5/04/ SSE, WE GAD, SE, THE SS IN1, 74, 30/10, 74,
                    ROBBLUS, NE. ROBBLUS/ NEK, DECORDITION, 13H, SHINICOESS, SK.
                    DOT. SL. DOT/ SIX. DOY. 1SK. SOAT 16. SE, DOLPTISE. VI. DOLPTISE.//
                    THE CONTROL OF 12 MILE 2 CID OF 11 OF
                    384,0401704,7K,12,8F12.2,F12.0,F11.0/
                    181,300-1970H 120 PCT OF LENGTH FROM ALE1,4X,12,8F12.2,F12.6,
                   FILE/// IZE, PUPISTON DIMETER (INDES),F7.2.
                     91,8405 - 82,84 TRAHEN POINT, 181,FS.1/
                                    IEX, PAUFT BETLECTION (INCHES), F7.2,
                     SK,NEWCS - GUTSOMED (INSOMED) FROM TRUMICH POINT,FS.1/
                    LEX. Public attraction (INDES) .F7.2.
                     SK.TRCS - ATT (FERLAND) FROM TRANSON POINT, SK.FS.1/
                   LEG. PHONES OF THIST INDIANGULET. ST. ST.
STOR FORMATION .
                   VEL, JOH! - EESIGN LAND CONDITION INDICATORS!
                   THI, ISTAC-OF ICION, IN. INCADING ICION!
                   201,9/10 POINT, 16X, 112, 11X, 3118/29X, 748PIN UP, 19X, 114, 11X, 3486/
                   201.1 HOPPING SACK, 193.105.193.002/201.1 HOPAGED ROLL.193.100.
                    198,3497 288,13481FT LAGING,118,8418,198,34657
                   SHI. SHOREWOETRICAL STAKING, BY, DISS. 198, DISS.
                   501,0/70/100,101,3/15/201,7/TURNIS,171,3/16// SI,
                     SON IF THE SESSON LONG COMMITTON INDICATORS ARE ALL O, THE SESS
                ON LOADS HERE GIVEN IN THE INPUT DATALL
               FORME (MI, 10K, 11HTAIL NEIGHT, FO. 1, 70K, 100++ LOUT ++//)
```

COURT ASSATA OLI 161 . FLONDS (GO) . TTAIR . TTYAIN . HEELA . HEELA . STAIES

MATERIAL CHAPTER - DEEP LADING CON PEDILE

DHRT TITLE - IMPRODUCTIONY CONCENTS

GHRT TIRE - SURROUTHE LAPIK,Y,P,VP1

I/Th AUTOTAN CHAT ET - DEEP LANDING KEM HEULE

GHAT TITLE - HON-PROCESURAL STATEFERTS

APPER OWN SET - SEEP LANDING SEAR HOULE PAGE 30

CHART TITLE - INTRODA TORY CONCENS

01/87/Th

CHART TITLE - SUSTBUTING LEASE (CSV,CSFA,CSL,VF,SF,SF,AMLOND,PLOND)

FORTRAN LISTING

OF

LANDING GEAR MODULE

```
86/87/74
            HEVT LISTING
                                           MARTIN CHAT ET - SEEP LABORS EAR RESILE
 CATO 10
             ....
                                        CONTENTS
                                                                       ....
                 . 101, 301 67 80016 161047 CEFF
                                                f18.8.
    71
                 . ION, SOHOE MAIN GEAR THE HEIGHT .F12.2/
                 . 101,304 GO HAIN SAM STRAT IN COUTT ,FIZ.Z.
    77
                 . 101.30163 COME IS 1017
    -
                                               $12.2/
                 . ION.30H GO HAIH SIGE STRUT HT COEFF. ,FIE.E.
    78
                 . ION, SONION INISCELLAREOUS HEIGHT
                                              J18.8/
                 . 101.204 TO HERE GRAS STRUT HT COEFF ,F12.2,
    77
    70
                 * 161,301100 HORE GEAR HOEEL HE 1017 .F12.2/
    70
                . 101,301 71 HOSE SIGE STRUT OF COURT ,F12.2.
                 * 10K,30HOS MORE GEAR THE MEION .FIE.2/
    .
                                              .F18 .
    .
                 . IOX. 304 TE MAIN CLAR LEGITH
    .
                 * 101,30H87 MAIN GEAR AL (FORE-AFT) ,F12.21
    85
    .
                 1017E 16,1011 (01N1 ,01N+35) ,N-73,001
    •
              --
                . ICH, 301 73 MAIN GEAR STROKE
    .
                                               J12.2.
                . 10K-20HOD MAIN GEAR NE. HOTE-AFT) J. 12.2/
    87
                . IGK. 304 To MAIN GEAR PISTON DIMETER ,FIZ.Z.
                . SOK, SEHIGE MAIN GEAR AL IDRIFT LAND: ,FIZ.2/
    .
                . IGE, 304 75 MAIN GEAR ECCENTRICITY .FIZ.Z.
    91
                * 10K, 20H1 1 HAIN GEAR M. ISRIFT LAWD: ,F12.2/
                -
                * LOC. SOULD MAIN SEAR AL (TURNING)
                                               512.2/
    .
                . IGH, 201 77 STOUT MIGLE (FORE-AFT)
                                               .512.2.
                -
                . SON, 301 TO STRUT ANGLE (LATERAL)
                                               J12.2.
    97
                * 101,30H13 HOSE GEAR AL HOSE-AFT) ,F12.2/
                . 10K,30H TO MAIN GEAR TIRES GO
                                              J12.2.
                * 101,3001 14 HORE GEAR IL (FORE-AFT) .F12.2/
   .
                . IGH. 30H GO HAIN GEAR TIRE WIGH
   100
                                               J12.2.
   101
                102
            C
   163
                 MRITCIG,96510(116)
              --
   166
                * CEL . TOTAL JE NASS SEEN BE HEEL . F12.29
   105
   107
             THE LINE SOOF
   100
   120
                 CALL LEGAR
   110
            ¢
   111
                 CALL LOW
  115
            c
               -
  113
   119
  115
            116
   117
                               -
           110
  119
            •
   150
                 CASH, UPIG, TH. TO: ROME SHETUGHBUR
  121
   180
                 2-07/1000.0
                                                                   -
  123
                AFD-1.000300000000000-.031251-2-14.21076
  186
                                                                   -
  185
                Win-, 00-0075-2-2-003, 125
                                                                   D07900
                 G79-1-3.8421679E0-2-8903.1851-2-148000.629E8
  180
           E
  100
                BODE (#1943-0FB) 43-0FB
                                                                   DW70000
  130
  131
                AST-1.0010037820-2-.2000761-2-47.5
                                                                   GP070000
  12
                867-1.66-2-27.25)-2-1705.6
                                                                   0070164
  133
                CST-403.4078-2-30702.5
                                                                   -
  120
           C
  125
                THER-LAST FLORET I FLOCST
                                                                  0.070 (20
  130
  137
                END
                                                                   0070130
  123
                80
                                                                  (0070150
  130
  190
           101
                              BURNOUT HE LIEFE
```

```
95/97/Th
             MENT LISTING
                                              ARTERIAL CHIEF RET - SEEP LABORS CEAR HOULE
 C400 NO
              ***
                                           courses.
                                                                            ----
              143
                   SAMPLE LACAR
   190
   196
              c
                            . . . LADING CER LANG. . . .
   197
             e
                  CONTRA ALGORIA/BIT IST FLANGIST TARE, THANK, THE LA, INCELA, INCELA, BRANCS
   140
             £
   190
                   COPEN /SPRINT/SPIGO
   151
   150
                  DIRECTOR FOR THE STREET
                                                                        LECTORER
   161
                  BOUTHBLOOK ST. AND (2) M. (2)
                                                                        10000
                  SHEIGHER FINIER, (818), (810)21, (61118)21
   195
                  (SI TATE, (SIO, (SIA IDIZINE
   196
             C
                                                                        LEE TOMPS
                           ----
   100
             e
   199
                  ----
                          COPUTE LADING IEION
                                                                        LECTO3 70
   161
                  GM (2) . B(17)
   162
                           IF T.O. SINKING SPEED IS O, NO LOADS ME COMPUTED
   10
                  W ( 0100) 1300,00,300
   165
                           HOVE GIVEN LOADS TO FLOADS ARRAY
   167
               00 FL0405( 1) - 0(107)
                  FL04861 21 - 011601
   100
                  FL0/851 91 - 9(100)
   170
                  FLANGS(10) - 0(110)
                  FLANDSCIĞ) - BITTET
   171
   170
                  FL0405(16) - 0(112)
   173
                  FL0406(33) - 0(113)
   170
                  (LAMELIN) - 0(119)
   175
                  FL0/05/1971 - 9(115)
                  FLANSING: - 0(116)
   176
   177
                          COPUTE LABORE SPEEDS OF HOT STYCH
                                                                        LEETONOS
   170
              300 IF ( 0(01) 1220,310,220
   170
   100
              -
                 60 TO 300
   100
                                                                        LECTOR
   160
             c
                           HOVE GIVEN LANDING SPEEDS TO TEMP
              20 V.(1)-0(91)
   166
   100
                 W.(2 )-0(92)
                          IF C.O. SINK SPEED IS O, GET METT AND GO TO METONTS - LACTOTOG
   100
   100
              200 IF (0100) 1330,305,330
                          COPUTE MILE FUELIGE
   101
             c
   100
             c
              330 At = 0(77)/67.2067
   193
   190
                  A2 - 9(70)/57.2957
   195
                  SF (AL 1000,010,000
   107
              818 CSV - C881A21
  100
                 COTA - 0.0
   190
  200
                 80 70 600
  201
  202
              886 IF (AZ)0+0,830,0+0
  202
  800
              430 CSV . COS(AL)
  205
                 CWA - SIMAL)
  300
                 CS. . . .
  887
                 -
  -
  800
              9-0 COV + COSTATANTIL-8-1COSTATITES + 1.8-(COSTARI) -- 2.81-1.511
  210
                 CWA- COSIATANIA - 9-16 MAINTEN - 1-0/1005 AND - 2-01----
                 CEL . COSIAFANIS. S/ICOSIASI)*** . 5.8/ISIMAPI1** - 2.01**.511
  211
  212
```

```
63/27/ A
             MOUT LISTING
                                              AFTER CHAT SET - SEEP LANGUE CEAR PODLE
 C490 NO
              ****
                                             COMPENSA
                                                                             ....
                           CONTUTE EFFECTIVE STRONES
   213
                                                                          LECTORES
                S. 1-4 4EE 00 000
               335 $7804(00-0173) . D(0-22) /12.0
   215
   216
                   AFE LAND FACTORS LONDED
NF 181831 1337,339,337
   217
                                                                          LOC 70030
   815
               227 80 236 0-1.2
                                                                          LOC TOOMS
   210
    200
                330 FIGURE-018-021
    #1
                                                                          LEE 70070
   800
   883
                           COMPUTE LOAD FACTORS
                                                                          10770000
    -
               330 00 340 H-1.2
    25
              248 F18401=(1.8- 811) 24((1840-88) 4421/81.24114(1.8-8180)
                 1 14( B()4) *STROICE(N) + D(15) *D(78) /12.81)/ (
    200
   227
                  1 01161-STROE (N)
                                   3+0(90)
   800
                            FVMK
                                                                          LEC 70030
               346 FMM((1) + 9(43)+(FM)(1)-9(98)) +(6M((1)-9(48)) / 9(25)
   730
   231
                   FWW(2) + 0(43) + (FIG(2)-0(90)) +094(12 1/ 0(35)
   /2
             233
                            GROUP CONSTANTS A.B.DIST
   270
   235
                  80 302 H-1.2
                  AIN1-466(DIN-48) - D($21)
   235
   237
               362 B(H)=466(D(H+46) - B(53))
   230
   230
                           CONFUTE MOT OF NOT GIVEN
                                                                          LEETINGS
               305 IF (0(100) )370,380,370
   244
   -
                           MEEL, TIRE NO THE
   2
                                                                         LOE710HO
               380 MTTMAI-01791 *01801 *.N25+.800023+(D179)+D1801/100.01++7
   201
   200
                           IF TAIL MEEL SKIP AIR GEAR HTT
                  IF (0(62) 1362,301,362
   24
               362 MTTAUN-D(87) 40(88) 4.54.000025*(0(87)*0(88)/(80.0)**0
   247
   1
   24
               HOEELIN-0.454/FTHAI+01761 . 01361
   274
                   MED AND VENETARING
   251
   200
                  THAIN-1.8202*(MEELN)
                                                                         LEE71148
   53
                  TTARE I . BESS INCELA
                                                                         LOC71150
   200
                   60 10 375
                                                                         LEE71160
   *
                           SHIFT GIVEN HETT
                                                                         LOE 71170
              370 MEELM-0(100)
   257
              TTMAIN-0(102)
   200
                 GRACES-0(183)
   /40
                  HEELA-011051
   861
                 TTARE DI 1861
   -
   83
                          IF T.O. SINK SPEED IS 9, 60 TO METONTS
                                                                       LCE71230
   20°
200
              275 17 494801 1288,1000,201
   2006
                          COMPUTE HOMENT OF INERTIA OF MIT AND ROTATING STATE LOCTIONS
              300 FIMIL - $(101)
   867
   800
                   IF (0(101) 1303,302,303
   ...
   270
                           IN TIRES NO TUBES-HAIN WEELS
                                                                         LECTION
   271
               300 F3M(1) + ((D(70)/12.0/2.02)++2 + (TMAIN + ((D(70)+1.010+0)0))
   120
                  * /12.6/2.51**2 *1.05*BRAKES + MCELHII / 32.174/ 0135)
   m
   270
               203 17 (0162) 1201,200,201
   276
               20 FM(2) = ((0:07)/12.0/2.52)** * TAME + ((0:07)-1.010-0:00))
   277
                  . /12.6/2.51**2 * MCDA1 / 32.174
   270
   270
                           ----
                                                                        L0271 300
             200 49(1) - 9(79) / 12.6
  801
                MARCH - 40(1) + .526
   -
                  MD. THR(1) - MD(1) + .00
```

```
63/87/7h
             -
                                               AMERICA CHART SET - SEEP LABORS SEAR PERSON.
 C40 10
                      ------
              e
                             K-1 THE-OFF HEIGHT
                              E-2 LADIO IEION
              .
                               L-I HAM CEAR
                              1-2 HOE GAR
                              I-I MAIN CEAR AT THE-OT HEIGHT
              £
                               1-17 HAM GEAR AT LANDING METONS
              c
                              1-35 MME GEAR AT THE-OFF NEIGHT
                               I-10 MILE CLAR AT LANGING HE IGHT
                   . . .
              £
                110 00 100 K-1,2
   807
             E
                   1 - 1 - 18-11-16 - 11-11-22
   300
                                                                           LEE71010
                           THE POINT
             C
               110 V - FWWEIK)
   201
                  # - PANKED - 0(10)
                   W . 0.0
   303
                   CAL LAMBICOV.CSFA,CSL,VF,SF,SF,FLAMOS(1).FLAMOS(1+1))
                                                                          LET1670
   -
             c
                            MARKE PERIOD
   207
                   MIL - MIKI - 91991
                  TV-ACT - DIK-001-1-2 - 20.0-TIME - DIVST-(STRIKE IKT/2.0-0011ML))
   200
   200
                   # (TWACTINGS,NEE,NEE
                                                                          LECTIONS
               100 TV - BIK-601 /(11-0-710FL-9(15))
   310
                   -
                                                                          LEE 71718
   341
               100 TV -1010-001 -0077(TVFACT))/(19.0-71004-0(93))
   312
   313
                           TOU FACTOR
                                                                          LEE 71 730
   319
              •
              NO 194742 - 48611.0-16461-4756613-3.15190/11.1-48406111-12-47666611
                  • •1001
   316
   317
   310
                                                                          LEE 71 786
                  #179#AC - 1.01436,430,436
   310
   200
               48 TEV -(2.8-TV /3.19198)+(AC68(TB/FAC))
                 NF (TV -TSU 1488,430,430
   201
   -
               180 180 - M. IKI TIMELI/C. SETWAKIKI HADIL I 1121 + . 383-TV
                           GECK FOR HETHER OF CONFUTING FYOU
                                                                          LET71818
   -
               120 IF (190 -TV 1932.4.9.49)
   2075
               120 FARE -FARMERS -510(3.15190-75) /(2.6-770)
   -
   27
                 40 TO 1/2
                                                                          LEC 71004
               124 FVEU -FVEUKIKI
   -
   330
             C
                          700/
                                                                          LEE 71880
   100
             e
   333
             C
                          PH UP
                                                                          LECTIONS.
   300
   135
                  ...
   330
                  ₩ • 8.0
  227
                  CAL LAIGS(CSV,CSFA,CSL,VF,SF,SF,FLSKOS(1+2),/L0/05(1+3))
   130
                  FLAMS(1+3) + FLAMS(1+3) + 8(3)
   700
  200
                           SPRING BACK
                                                                          LEE 71910
  21
                  FLOGS(144) - FYMAKIK) - CBV
  N
                  FLAMBERT-S) - ANNEX ($14) - FLAMBERT-3) , $14) - FLAMBERT-3)
  31
                 >~
  246
                          DECK FOR 44 TRIP
                                                                          LEE71TH
  246
                  WH. - 21125,000,000
  207
  200
                           STAINING HEE SEAR LANS.
  200
                           METHOETRICAL BRAKING
                                                                          LEC71070
  204
               000 W + LAIK) + .4-9(E) -9(S) 1/9(ST) + 004F(E) + 9(S) / 9(ST
                 # - #HHI 1.84F , BIE) - 8(91) - 60#IE) - 9(15)/ (1.84)$1+42) )
                  . ...
                  CAL LEGISCOV,CWA.CB.,W.,W.,W.,TLAGS(1-10),FLAGS(1-11))
```

```
OVEN'N
            HEVT LISTING
                                              AFIGURE CHAFT SET - SEEP LANGING SEAR HEBLE
 CATO 10
              ••••
                                          CONTENTS
   -
               955 IF 1K-11930.536.400
   337
   200
             C
                          701146
                                                                        LEE TROLE
               $30 W . AIK) / DIST . GRATIKI . DISS
   700
   200
                 8F - F10H - BIN31
   301
                 W - 0.0
   -
                 CALL LOADSICSV.CSFA.CSL.W. W. J. FLOADSI(1+12).FLOADSI(1+12))
   333
   -
                                                                        LECTROS
   306
                  W - AIK) / DIST + CONTIK) + DISS)
   -
                  W . 0.0
   257
                 W . MINICO.S . .S . BIKE . BISH / BIST / BISH I . W
   300
                 CALL LONDEICSV.CWA.CRL.W.OF.W.FLONDEIT+INT.FLONDEIT+IST
   -
                  --
   370
                          BRANED ROLL
   371
                                                                       LOC TO LOO
   170
               373
                 W . . . W
                  W . 8.0
   374
   175
                  CALL LONGSICSV.CSFA.CSL.VF.SF.SF.FLONDS(1+6).FLONDS(1+7))
   376
            c
   877
                          BRICKS TRING
                                                                       LOCTEISO
                 W - .5 - FL0/05(1)
   170
   179
                 W - 0.0
                 # . 01111 . W
   301
                 CALL LONGSICSV,CSFA,CSL,VF,SF,SF,FL0405(1+0),FL0405(1+0))
   ***
          c
   303
                         WENTETRICAL BRAKING
                                                                       LECTRICO
                 200
   -
                 ...
   *
                  . . . .
   287
                 CALL LOADSICSV,CWA,CRL,VF,0F,W,FL0405(1+10),FL0405(1+11))
   -
   390
                  IF IK-11995,995,986
   ***
   201
                         TOUR
                                                                       LACTER 30
   300
              WS W . B(K) . GO(T(K) . G(43) / G(51 / G(36)
   303
   30°1
30°5
                          FTON
                                                                       LOC TOPSO
            c
              WE IF (05/1(K)-30000.01450,450,440
                                                                       LOC TRACES
   300
              WE IF ISSITIKI-180000.81452,452,451
                                                                       LOC 72270
              498 FTON -0.3-000(TIK)
   307
                                                                       LOC TORSE
                60 10 465
   700
                                                                       LOC TODOS
   -
              152 FTGH --15.81090(T1K11/79.818129.8
                                                                       LOE 72300
   100
                 60 TO 198
                                                                       LECTOR
   981
              494 FTOM -0.15-00AT(K)
                                                                       LECTE SEC
              100 07 + .75 + FTGH + D(193)
   102
   -
                 CALL LOADS (CSV.CSFA.CSL.VF.DF.SF.FLDADS (1+12) .FL0405 (1+13))
   105
                                                                       LEETING
   187
                716 - 411111.5 , .548(K)40(94) / DIST / 0(51))
   100
                 W . CONTINU . 1.5-0(K)/D151 . F16-0(51)/D(5(1) . D(43)
   100
                 W . 0.0
   *10
                 # - ns - w
                 CALL LONGS(CSV,CSFA,CSL,VF,SF,SF,FL0405(1+15),FL0405([+15))
   911
   918
   113
             THE THE OFF
                                                                       LECTIVES
            •
   -10
   -16
                         IS HOSE GEAR GOVE
                WIL - 21405,534.534
   *16
   917
   910
                        IF TAIL CEAR SKIP HOSE CEAR LOADS
   410
             105 M (0162) 1900.534.500
   486
   40
                         ---
              S. 1-41 SOD DO DOD
   4
  45
              -
                 FWWK(1)=FWWK(1)+A(1)+ 0(36) / 0(5)
```

```
02/87/7h
               HPVT LISTING
                                                       APPELON CHIEF MET - DEEP LABORS SEAR HORAE
 -
                 ****
                                                                                           ****
                      FW0812 1-FW0812 1-A121- 01251 / 9151
    477
    -
                      COI21 - 01071 / 12.0
    411
                      -----
                      80. * ($180 + ($180 + .60
    120
    431
    -2
                      AL - 94861 / 57.2957
                      COV . COLIALI
    433
                      CWA . SIMALI
    13
    135
                      CS. + 0.6
    .
    137
                                 ----
    130
                 E
                      . . .
    130
                                                                                       LECTOTOR
    *
                 c
    **
    443
                   53: M. (P.00) 1000,000,1000
                  (00) 0, (5) Jr. (5) 0, (5) 1, (6) 1, (00) 0, (1) Jr. (1) 0, (1) 1, (00) (00) 0, (1) 1, (1) 1, (1) 1, (1) 1, (1)
    ***
                  000 FORWATCHIS, 00K, 201-* LIEAR - 19100) **//
    ***
                                 ₩7
                     . DIX, DOE ION .4X, 1 HEAD FACTOR, BY, BHFT/EC1, 74, BHFT/EC1//
                     · 274.00.00-007.510.1.511.3.513.1.519.2/
    ***
                     * 23t,01.4046 ,F10.1,F11.3,F13.1,F19.2////
    400
                      MITE 16,7001
                   700 FEBRUIT YER, ISCARDING CEAR LOADE!/ DIK, I TOWNH LANDING CEAR,
    461
                     . St. I THOSE LABOUR GEAR//SEX, BITALE-ST, SK. TLANDING, SK.
    163
                     . BING-67 .St. TLADING
    *
                      80 716 H-2.16.2
                      -
    485
                      40 TO (7)1,712,713,714,715,716,717,7101,MD2
    467
                  711 MIRIG, 7811
                  TEL FERNATCHE, TE, DITHE POINT)
    488
    400
                      60 TO 731
    400
                  712 MRITE (6.702)
    461
                  100 F00W(100,71,76PIN UP)
    ***
                      en 10 731
    463
                  713 MITE (6. TE3)
                  723 F00147 (100,7K, 1)10F0106 GACK)
    ***
                      00 TO 731
    ***
                  719 MR | TE (6. 789)
    467
                   TO FORME HIS, 7K, I HORAGED ROLL!
    400
                      60 10 730
    ***
                  715 MH PE 16.785)
    170
                  76 FERMICHO, 7K, L'ECRIFT LAGING!
   971
                      40 10 75
   17
                  716 MITC (6, 786)
    473
                  THE FEBRUATIONS, THE INCHESTS. GRACINGS
   17
                      ee 10 731
   175
                  717 MIR (6.727)
                  127 FEBRAT ( 140, TK, O/TGAING )
    476
   977
                      86 16 730
   170
                  710 MRITE (6,700)
                  700 FORWAY (140 , 74 , TATUTO (140 )
   170
    ***
                      60 NO 730
   401
                  731 (RITC (6.701)
   4
                  TO FORWEIGH , SEE , SHAKEAL ?
                     MRITE 18, 732 FLOADS IN-11, FLOADS IN-151, FLOADS IN-311, FLOADS IN-471
                  732 FORMATOHH-, 38K, FB. B., 3K, FB. B., SX, FB. B., 3K, FB. B.
   **
                     MRITC16,7021
                  THE FORMATICES, GOODSHALL
   487
                     MITE IS. 732 HTLOADE IN . FLOADE IN- 161 . FLOADE IN- 321 . FLOADE IN-161
   999599
                      --
                  725 40(15(6,701)
                     MIR 16,7321/L0/05(H-11,/L0/05(H-15)
                      MITC (6.702)
                      1817E (6,7321FL6486(N) ,FL6486(N+16)
                      00 10 710
   100
                  720 10111210,7011
                      MITCIG, 7351/L0406(N-1),/L0406(N-31)
                  733 F6RWF(1H+,38K,F9.0,17K,F9.0)
```

A SECOND PROPERTY OF THE PROPE

Since Production

```
W/27/70
                                              MISTER CHRI MET - SEEP LAGING SEAR HEBLE
             HEVT LISTING
 -
                                           CONTURS
             ****
   487
                   MRITE 16, 7821
   480
                   MET W. IG. 733 IFLAMOS (N) .FLOMOS (N+ 3P)
   900
   901
               1800 07 1400
   963
              • .....
   -
   161
                                SUSTAINE LANT
   100
              107
   100
                   SUBMOUTHE LONG
   -
   -
                           * * * LANDING CEAR LE IONT * * *
   511
                   CONON ALCONTA/DILIGI, FLOMDSIGO), TTAIN, TTHAIN, MCCLA, MCTLM, GRAVES
   512
   513
             c
   819
                   COMON /FDATT/ FDATIGES
   615
   -
                   DIFFERENCE PLANTHING .DIALED .CONT. (2)
   617
                   -
                  -
   510
   919
                   DIFERSION 2141, PHI 141
                                                                        LENGIZO
                   PIPERSON MEANING
                  PHONE ION BOARTHING LEGISIENTS
                                                                        -
   -
   -
                  DISCOST (CH
                                45(3) .RAT(3)
   w
                   -
                  DIFFICION PESTINI, MOLEIZI
   -
   48
   927
             e
                                                                        LOUZING
   -
                   ----
   100
                   456 (2) - 8(47)
   530
             c
   931
                           CLEAR DATA
                                                                        LOUTBORD
   532
                   101AL - 0.0
   533
                  MIGC - 8.8
   -
                  WIC - 0.0
   135
                  MTAG. - 0.0
                  WTOIL - 8.8
   535
   537
                  MOTLY - 0.0
   530
                  DEFLZ - 0.0
   530
                  007UP - 0.0
   940
             C
   91
                         HEAT TREATHERT OF HATERIAL
   942
                  HT-01951
   9-3
             c
                                                                        10/71020
   911
                           HODALUS OF RIGIDITY
                                                                        L0170310
   946
             1656 0420-0.540(96) /(1.6+0(95)
   •
   917
                          STATIC LOAD ON MAIN GEAR PER STRUT
                                                                        LB/70330
  940
940
                  84 - ASC(0(46)-0($3))/(D($2)-0($3))) + GMT(1) / D(36)
             c
   -
                           ET UP FOR HAIN TRIP
                                                                        -
  151
                  MTRIP-8
                                                                        UB/70110
   -
             C
   983
                         CHECK FOR LOADED PISTON DIMETER
                                                                        LOUTENZO
  .
                  W 101741 11005.2001.1005
            C
                          CALCULATE PISTON BIANETER , P. FOR STATIC MEIONT . SHE LOWING
             2001 17 191 -00-2.012002,2003,2003
  987
                                                                        -
  -
              8002 ACH-107.5
                                                                        LOCIONIN
                 9CH-200.0
                                                                        -
  100
                 40 10 2007
                                                                        LOUTENED
  -
              2005 IF 194 -23010.012001,2005,2005
                                                                        LINTOSIO
LINTOSIO
LINTOSIO
LINTOSIO
LINTOSIO
LINTOSIO
LINTOSIO
  -
              8001 ACH-188.7
  963
                 801-946.6
  -
                 80 10 8007
              2005 IF 191 -77995.812005,2000,2000
              3000 0P -9087519.8-9H 1/(1900.8-3.1916))
                 80 70 2000
```

```
63/87/Th
              -
                                                APPLEA CHRI ET - SECA LAGNE CAR ROLLE
                                             CONTURS
 CARD 140
                                                                            LB/70578
    -
                8005 ACH-05.6
                    BC29-100.0
                                                                            LOUTERA
    -
                8007 SVLA-(-1.0/3.0)*((80)VACH)**2)
                   $14.8-11.0/27.01*112.0*18CH**31/14CH**311-1127.0*1.0*94 1/1
                                                                            LG-/70536
    971
                                                                            LONT tell
    112
                  13.15164400111
                    MOTO-1081111994-0142141-01+11994-4*131/27.011
    673
                    # - (1-8448/2.8)-840701**.33333 + (1-8448/2.6)-840701**.33333
   57
                   . . IBCN/13.0*ACREE
    575
    576
                    00 10 2000
                1005 0P - 01741
   $77
    570
               •
    579
                           LENSING FROM ANLE TO SECTION A.S.C.D
                                                                            LGM70740
               2000 00 1070 P-1,4
    -
                1070 (LASTNINI - DIN-30) + DITE)
    -
    -
    993
                                                                            LBM70770
                             MISC BALL
              £
    -
                   101140-01721
    985
                    BFACT-(101LIB/(101LIB-FLAGTH(2)))**#
   107
                   ECCE 1-0(78)
                    BD. TVR-0.40-0(70)
    -
                    (DTYR-0170)
   ***
                   $780E-01731
                    BD. TA-0(63)
    901
                    MEFL! - 91881
   100
                    MEELS-0(76)
                    STEATS- 01301
   **
                    -
                   MITTER -BRANCS
                    -
   987
                    MITT-THAN
   ***
                    MISTH-01001
             c
                    BOT - B(88)
   001
                    907 - 01001
   902
                    86786F + 8.8
   863
                    - 1-01
   867
                    8.8 · 1400
             C
   885
                    #8LE111 + 01771 + .01745223
   887
                   MBLE(2) + 0(70) + .01745323
   .
                   COSTNE - COSTATANISORTITI.8/COSTANDLETTITITE +
   -
                                      11.8/C05(#GLE(2))1*42 - 2.6())
   610
              c
                           MET UP OUTLECTION LOOP COUNT
   -
              e
                                                                           L0071010
   612
              1074 L007 - 0
   613
              C
   619
                           SET SEPLECTIONS AND AREA TABLES TO B
                                                                           L60/71030
   015
                   80 1071 #-1,4
   616
                    MEANINI-6.0
   617
                   Y (81 -8 . 8
   618
                   Z181-0.0
  610
               1071 Fulimi-0.0
   -
              E
   -
              E
                            . . . GEOIN LOOPS . . .
  C
  823
              1070 00 3320 L-2.20.2
  655
                   J - L - 32-4781P
  .
              E
  47
                          J IS ISPUL LAW SUBCRIPT . J-1 IS AKIAL LAW SUBCRIPT
  ....
600
             c
             •
                                         MAIN STAR
                                                            -
  630
                                                        THE-OFF LABORE
  631
                     THE POINT
             •
                                               10
  622
             C
                      PHU
                                               .
                                                           *
                                                                   .
  633
                      -
                                               *
                                                           .
                                                                   .
  63%
                      GRANCE MILL
             •
                                       .
                                              -
             .
                      MAT LABOUR
                                       10
                                               .
  635
             ¢
                      64M. (No.110)
                                       18
                                                          *
  637
                      -
                                                          •
             •
                                       19
  630
                      TUTOWNS.
             C
                                       16
```

```
63/87/7h
             MOVE LISTING
                                                 AFFICH CHRI SET - SEEP LADIS SEA HOLE
 C490 100
               ****
                                              CONTENTS
    430
                        OCCK FOR LONDS NOT CONFUTED ON NEW HOLES
    -
                   M (FLD/051J)- 0(27)12320,1000,1000
    .
    -
              1000 00 3300 1-1,4
    -
    -
              C
              c
    015
                            DECK FOR GRIFT LADING
                                                                              L0471200
    946
                   17 IL-1012010,2015,2010
    .,
               2010 1FIL-2511001,2015,1001
    .
                             FORE AND AFT BENDING HENCHT
    -
             1001 BW . (BFACT-YLE)+ABSICCCCT-SINIPHICEI-BFACTII-YLEIS-FLOADSIJ-L
    651
                 1147LB/05(J)47LJB7H([)
                                                                             L0471200
    -
            C LATERAL BENDING MOVENT Lim

BYE + (BYFACT+2/23)+ABS (ECCET+COS (PHE/23)+BYFACT+)-2($))+/LOADS(J-)

11 Lib
    663
                                                                             LB471270
    m
m
                                                                              1.0471200
    886
    667
                            TOTAL MORENT
                                                                             L0171300
             C
                1002 TPHI . 4/LOA/61/J1//LOAD61/J-11140/2
    •
    .
                   60 10 2030
                                                                              L0471 120
    -
    -
                            BRIFT LIGG BH 440 SET BHY, THIS TO ZERO
                                                                             LOU71 330
             2015 DUFLIG . FLIGHHI | 1-COTYR-6.5-CELTYR
    IF (QLFL)6 / 10.0+ECCET)2016,2020,2020
    2016 FL0406(J)+.75-FL0406(J)
                                                                              L0471 200
               ## +1-ECCET + 2(2)-@97ACT - 2(1)) + FLOADS(J-1)

+ • BLFLAS + FLOADS(J)
    .
    667
                  60 10 2022
                                                                              LB/71300
   -
             2020 DIE - (ECCET + 2(2)-DIFACT - 2(1)) + FLOADS(J-1)
   679
                 . BLTUS . FLORES(J)
   671
             2022 007 - 0.0
   672
   673
                   1941 - 0.0
            C
   674
   675
                          ESATAN B.H.
                                                                              LB/71490
              (C 5--2-01-1 5--1001)100- NG 0005
   676
            c
   677
             c
   678
                            CALC DRAS AND SIDE BRACES
                                                                           L0071630
   679
   -
                   IF(L-10)3001,3007,3001
   .
             2001 1511-161202-2007-2002
   3002 IF (L-25) 300+, 3007, 300+
               300+ 05704 - MUKI IDSTRAT , STRATS + D(90) + 2.300+ + TOTLAG
   -
                  1 * FLANDSCJI * 007 / D(S7) 1
   905
   687
             1 * FLANDSIJI * 587 / 01571 ) C
              3007 967947 - AWALLESTRAT , STRATS * DISGL * 2.3094 * TOTALIS
   -
   •
   .
                            ET UP HORKING D OVER T
                                                                             LB(71578
             2948 00 2058 H-1,3
1954H10 -1H1700 8006
   L0/71100
   803
   -
              c
   005
                           SET MATIO CHECK COUNT
                                                                             LM/71500
                  PAGE - 0.0
   667
            c
   .
             c
                           FIND STRUT DIMETERS
                                                                             LO/71520
              2005. IF (1-4)2000,2000,2000
                                                                             LG671530
   700
              2000 00 2070 1-1.3
              8070 BIANN-11 SP +0.6251/1001(H)-2.811-001(H)
   701
   700
                   60 16 2000
                                                                             LB(71570
   703
   70%
70%
              .... 1-01 2051 0-1,3
                                                                             LB/71980
               SOLI PIAINI-SP
                 014H - 8P
   787
              1000 DO 2000 I+1,3
   700
```

```
81/87/Th
               MENT LISTING
                                                     APPLAN CHAT SET - SEEP LANGING SEAR HOULE
 CARD 100
                 ••••
                                                  contents.
                                                                                        ••••
    718
                      CALL BIGRISOT IN JIT, SHOFR, THOFRI
    711
                                                                                    L0471000
                                 STREETS NO AREA
    712
                e
                      #8(9)=0.0/(DIAM)=(1.0-(1.0-(2.0/001(H)))==2))=SGRT((BWR / BNDFR)LGH71830
    713
                    [**2*1790] / 12.8* THEFR11**21*FL0405(J-11/D157)
    719
    715
    716
                                BATIO - STRENGTH AREA TO GEORETRIC AREA
    717
                 3020 RATINI + ASINI / IFI + DIAINI+-2 + (1.8 - 1.8/00T(N)) / DOT(N))
    718
    719
                                DECK BATIOS
                                                                                    L6471660
                     IF 15.0-RAT(3113030,3000,3000
                                                                                   L0471900
    720
                 2030 IF 11.0-047(11)3031,3031,3032
                                                                                   L0/71910
    181
                 2031 17 1740512010,3010,3010
    ***
    723
                 3032 IF IPAGE: 3050, 3050, 3000
    -
    75
                 2010 00 2011 11-1.3
                                                                                   LB/71940
    786
                 3041 00T(N) - D(N-19) - 0(20)
                     PASS - 1.0
    187
                      40 10 2006
    700
    70
    720
                 2000 CALL LOTPIRAT, DOT, 1.0, DOT INT)
    731
    732
                                                                                   LO:/71990
                 713
                     PARS - 1.5
    734
    735
                      ---
    738
    737
                 2000 CALL LOSP(RAT.001.1.0.00VT)
    730
                      00 TO 2000
    730
    7+6
                 3000 00VT+ 01311
    741
    742
    713
    744
                              GECK FINAL B/T, SECTION NO DIMETER
                3200 00V7 - AMINI (00V7 , 91311)
    745
    746
                 2005 IF (1-4)3230,3200,3230
                                                                                   LOUTELZO
    707
                 2230 DLAN - II SP +8.6251/100VT-2.011-00VT
   710
    749
                                MEA FROM STORETRY-FINAL
                                                                                   LOVEIN
                2000 AFAC . PI . DIMI-12 / DOVT . (1.6 - (1.6/00/1))
    750
   751
   742
                              OCCI MEVIOUS-CURRENT AREA
                                                                                   LOUTER
   753
                     IF (AREAH))-AREAC 13519,3300,3300
   754
   706
                               STORE IN TABLE N-AREA.D/T.LOAD ID
                                                                                   LOCKED
   796
                 3018 MEMILI) - MEK
                    GOVETNI 11-00VT
   757
                                                                                   LOTTENED
   788
                     L00(DH(1) - L
   700
                                IF SECTION &. SAME DESIGNING LOADS
   750
                    IF (1-2)330L,3295,3300
   761
   782
                2000 BHDZ-BH
   783
                    9401-04
   701
                     TPHOZ-TPH
   700
                     01/02-01M
   786
   767
                               SAME AREA AT SECTION 2 IF LOOP+8
   700
                     IF (LOOP) 3500.3500,2300
   700
                MAN AFEATS - AFEAC
   770
   771
                STOR CONTINUE
                                                                                   -
   770
   773
                STORE CONTINUE
                                                                                   LOITENS
   770
   775
                               IF NO REPLECTION, ENPARE DEPLECTION ANNLYSIS
               c
   776
                     NF (GEFL 1) 5020, 1000, 5020
   777
   770
               .
                               MEDICAL LAND COLLET
                                                                                  LEWIS
   770
                1000 IF (LOSP)5000,1630,5000
                                                                                  -
```

```
82/87/7h
              -
                                                AMERICA OVER SET - SEEP LABORS SEAR HOULE
 CATO 100
               ****
                                              CONTENTS
                              S HOLTON IN MITHON & RECTION &
                4030 F16 - Pt - 91/02** / 18.8*$0\RTH(2)) - 11.8-11.8/$0\RTH(2)))
    700
                   . . (1.0-18.8/80/RMR2)) . (1.0-(1.0/80/RMR2))))
                             SEPLECTION AT SECTION 2
                    YIEL - BUSE . (IFLISTHIEL-TOTUS) ----- / (2.0-01501-F16)
    -
                   2(2) - 9002 + ((FLISTING)-TOTLIS) (12) / (2.0-0-56) (F16)
                   FM (2) - (FLMSTH(2) - TOTLMS) - TPM (02/12.0 - GHOD-F (0)
                                                                             LOUTESON
    700
                             SCILECTIONS AT ALL SECTIONS
                                                                             LINTERES
    701
               1037 00 1000 IF1.1
                   YIN . YIE . (IFLISTNIN)-TOTLIS)/(TOTLIG-FLISTNIE)11**2
                    ZINI - ZIZ) * (IFLNSTHINI-TOTLINS)/(TOTLINS-FLNSTHIZ)))**Z
               1000 PHEIRS - PHEIRS . (IFLIGHNIN)-TOTLIGS/(TOTLIG-FLIGHNIR)) 1**2
    700
    786
                             INCREASE LOOP COLUMER
                   LOSP - LOSP + 1
    797
   700
                   OD TO 1070
                                                                             -
                             -
                                                                             L0170000
               9000 IF (ASSIAREARS - AREAN(21) - 0(12))9010,9010,9010
   601
              .
                             SME MEA AT SECTION 2
   80°
805
              SOID AFEARS - AFEARER
                   LOOP - LOOP + 1
   887
                   IFE 6 - LOOP 19018,5010,5012
   .
   .
                            GEAR TABLE II
                                                                             LOWING
              9012 00 9013 IP1,4
   818
   811
               ---
   918
                                                                             LOC70000
   813
               9010 SEFLY - YIN) * (101US/IFUSTHIN)-101US))**2
   -
   815
                   BEFL2 - 2141 - (101UB/IFUBTH(4)-101UB)1--2
   816
                   -----
   817
              c
   818
                            LENGTH OF MILE
               ----
   -
   .
              c
   c
                             DECK FOR HAIN OR HOSE SEAR
                   IF (MTRIP)5010,5030,5010
   823
   -
               ---
                  00 10 5050
   -
              e
                             LOS ON ARE
   827
              £
                                                                             LOCKER
               9639 ALO40-6847(1)
   -
              c
                   IF (0(76) - 4.0 (5050,5031,503)
   830
   632
                            CONFUTE BOOIE HE IGHT WEN & WEELS/STRUT
   633
              e
               9031 800L - DP + 1.1400TVR
   635
              c
  636
                   DE - (18191) - CONTILL / STRATELISM
   637
                   # + (0(5) * .84867(1) / STR/TS)++21++.5 * 600L/2.0
   830
  630
                   THE - 8(43) + .4 + GRATELL + GOTTR / STRUTS
   -
                   CALL BIGRI BIBBI, NT, NFB, NFT)
  -
   01
                   80 - (132.0/P1) + (100/F3)+4 + (10/FT)+421++.5
   -
                  * / (1.8 * ((8:20)-2.81/9(20))**(2) / (1.6 - ((0(20)-2.0)/0(20))**(2)
                  . 100. 33333
  016
  017
               9630 88847 + 81901-91871-978475-968L-1P1-90 --2-1 91881-1.81/ 81881--21
  •
              c
  910
                            PERSONAL SILVERS
                                                                            LON75180
               1000 BWK - 01431 - MEAN / MWKI 12.0.
                   21,012 + 911 - 111,000 + 000,000 + 12,000 - 10,000
```

```
MATERIAL CHAPT SET - SHEEP LANGUES SEAR HESILE
             AMERICA LIGHTER
A1/87/7
 (40 H)
              ****
                                           CONTENTS
                                                                              ****
    -
    663
                             HELLUS OF RAPT ON MALE
                                                                          L0475190
                  CALL BIOR: 9:321,HT,BIOD,THOD)
    -
             e
    ***
                             MLE DIMETER
                                                                          L0/73100
                  91AAK+(132.791)*SSRT(((BMK/BHS))**2)+(THAK/(2.*THS)))**2))**.333 LGH73190
    667
    800
             E
    .
             •
                             VALUE ALL
                                                                          LEA/73000
                   VELAK-IPI-IDIAAK-42140CCLE/ N.O 1-AKLOTH
                                                                         L0/73210
    461
              c
    -
                             OIL VOLUE
                                                                         LENTERNO
              $600 VELOIL-PI + 6P-42 + 5780E + .375
    c
    -
              C
                            BUTCH CYLINDER WI
                                                                          L0173000
                   MTGC -- ( (MEAN) 1) -2.0-MEAN(2) - MEAN(3) ) /4.01-((LMSTN(1)-(LMSTNLG)/73270
    887
                  11311-5780/75-01901 (0186)
    -
             c
                             HOER CYL MT
                                                                          LO/72000
              9000 MTIC + (1P1 + 9P+12 / 8(86)) + (1.0-(1.0/0(26))) + (FLIGHHIE) -
    870
                  871
              c
   878
   873
                             MT. MLE,OIL
                                                                          LB/73330
              SORE MEAN. -STRUTS-(DISO) -VOLAKI
   874
                   MIGIL -VOLOIL-STRUTS- 0(36)
   675
   676
                           TOTAL STRUT MT
                                                                          L00/73300
   877
             C
                  TOTSTW - MTGC + MTIC + MTANL + MTGIL + METT + OSTRAFT + SETTINT
   878
   679
                       + 808/F
   .
            C
   801
                           TOTAL CAI CALATED HE IGHT
                                                                          L0473300
   -
                   TOTCAL - TOTS TH- MET I
                                                                          L0/72+00
                           MAIN OR AUX TRIP MISC.MT
                                                                          L0/73+18
   -
                  IF INTRIPISITO,5180,5118
   885
                                                                          LOTTINE
   887
                                                                          LG(73-30
             c
                           MAJN
             $180 MTMISC+ D(S) -1015TH+ D(S) -101CAL+ D(7) -48MT(1)
   .
                  00 10 5120
                                                                          L01/73+00
                                                                         L0/72100
   601
             c
                           AR
               5110 MM 19C- 0101 -1015TH- 0191 -10TCAL+15.0
   803
                            OD. TA
   -
             c
   -
             SIZO TOTAL - BELTA - ITOTSTN - MTHISC - METTI - METT
                  MINISC - TOTAL - TOTSTN
   887
   900
                            MAIN OR ALK TRIP
                                                                          LO/73520
                 IF (MTRIP)$130,5121,5130
                                                                         L0173530
   900
                            ACO MISC NEIGHT
   981
                                                                         LG173100
              5121 TOTAL + TOTAL + 8(184)
   803
             c
   -
             e
                          STATIC MEION FOR AN OCAR
                                                                         LOCAL DE
              $130 to -000/7() 1-150 * 0(35) 1
   905
   997
                          TAIL WEEL CHECK, 8-TH
                                                                         LOUTTON
            c
   -
              $132 IF (DIGE) 10023,5134,6023
   010
            E
                           TAIL MED. UT
                                                                         LOUTER
   911
              SID: TAILME . CIPIBLESI-ALOS(TOTSTV) . B(191-ALOS(SM) . B(171)
   913
   919
             c
                          FIND BIOR MO THON FOR EACH MEETIGH
                                                                         L04730+0
             0023 DO 0005 P-1,1
   916
             CALL BIGRICOVATHICKS, MT, PFBIRS, PFST(M) )
   917
             e
                     COPUTE OS OF LANGING CEAR
   919
            ¢
   -
                  IF INTRIPITIES, 748, 744
```

74 MISIGETTAS, 746, 746

```
MENT LISTING
63/87/7n
                                                    AMERICA CHIEF SET - SEEP LADING CEAR FORLE
 CARD 10
                                                 CONTENTS
                 ....
                                                                                       ****
    923
                  746 HC6 - 8.0
                      100 - 0.0
                      200 - 0.6
    27
                      00 10 5140
    -
                  7-6 2000 - (AEAHE) - (FLIGHHI)-FLIGHHE))--2 / 2.0
                         . (AREANE)-AREANE)1/2.8 . (FLASTME)-FLASTMES11-2 / 3.8
    931
    832
                                                 · AREAN(3) · (FLABTH(2)-FLABTH(3))
    933
                    . . (FLIGHWEE) - (FLIGHWEE)-FLIGHWEE)1/2.6) .
                     . (MEMIS)-MEMIS11/2.8 . (FLIGHIS)-FLIGHIS))
                    . . (LASTHIE) - 12.84[AGTHIE]+[LAGTHIE])/3.811 . COSTIE
    15
    936
                     * / [([]GTH(])-[]GTH(3)) * (MEAN()+2.0*MEAN(2)*MEAN(3))/4.0)
                     HERRE . 2000 . TANKARLE(1))
                      VC00C - 2000C + TAN(ANGLE(2))
    230
    911
                     2051C = (1P1 + 8P+42 / 9(261) + (1.8 - 1.8/9(261)
                    . . (FLAGNACE) - (FLAGNACE)-FLAGNACE) /2.6)
    942
    9+3
                     . . IFLIGHMEN-FLIGHMEN . AREAMAN . FLIGHMEN
    -
                     . . IFLISTHEED - IFLIGHEED-FLASHIED 1/2.81) . COSTIE
                     . / ((P1 - 0P+42 / 0(26)) - (1.0 - 1.0/0(26))
    945
                     . . (FLIGTHIZ)-FLIGTHIZI) . AFEAH41 . FLIGTHIZI)
    9.7
               c
                     MESIC . SESIC . TANKAGLECTII
    -
                      VOSIC - ZOSIC . TANKARLE(2))
    980
               C
                     2000K - (FLASTNICE) - FLASTNICE) - COSTNE
    951
    MODEL - SCHOOL . TANKARLEILI)
    963
                     VCCOL - ZCCOL . TANKAMILE(21)
    100
              ε
                     2000 - .376 . FLASTHILL . COSTIE
                     HORS - 3.0**.5 * FLHSTH(1) / 8.0
    957
                     VC005 - 0.0
    -
              E
    -
                     2008 - .375 - FLMSTH(1) - COSTIE
    -
                     HC005 - 0.0
    -
                     VC005 . - 3.0**.5 . FLIGHILL / 8.6
    •
    883
                     ZARTO - FLAGTH(1) + COSTIE
                     MARTIN . ZARTON . TANIMOLE(1))
    -
                     YAMTED - ZAMTED * TANIMALE (2))- ECCET
    -
              c
    667
                     $08 -IMTGC-2080C - MT1C-2081C - MT91L-20801L - DETRMT-208DE
    900
                    * +9579/1-2005 + 24/198-14/TAL-H/THE-H/TTT-H/TBRK+800HT 11 / TOTSTH
                    MES - INTOC - MEDIC + MT IC - MEDIC + MTO IL - MEDDIL + SETTINT - MEDIC
   979
   971
                    . +95 TRAT -HCOSE + MANTES-INTAL -HTHAL -HTTT-HTERK-BOOMT 11 / TOTSTN
   972
                     YES -INTEC-YEARS . NTIC-YEARS . NTOIL-YEARS . DETRUT-YEARS
                    * *BETRAT *YCOBE * YANTED*(HTAIL-HTML-HTTT-HTBRK-BOOMT 1) / TOTSTN
   973
   874
   975
   976
   977
                5141 IF(0(60))5284,5284,5282
   970
   979
                SAN 00 5255 PHI.4
   -
                1855 LODIONINO . 8
                1002 IF INTRIPISAES, 5223,610
   983
               c
                1003 MR17E16,0011
   985
                 661 FORMATCHIL, WEX, SHOWIN LANDING CEAR HEIGHTS (POLICE), 25X,
   -
                    1 1000 LOUT ***
                    ANTITE IS. SI I HATER, ANT IC, MTAIL, MOIL, SETTINT, SETTINT, MTHAL,
                    · MITT,MINESC
                 BIT FORMATING, VOK. PHISOTER CYCHOER, 3K, FB. 1/46K, GP15TOL. 11K, FB. 17
                  * 46K,4MALE,13K,FO.1/ 46K,3401L,14K,FO.1/
                    . 46K,1046A6 STRUT,7K,FB.1/ 46K,104610E STRUT,7K,FB.1/
```

```
03/27/7s
                           -
                                                                                                AUTOFLEM CHART SET - SHEEP LANDING SEAR MODILE
   C450 NO
                                                                                            CONTENTS
                                       . 48K, IBMISC ICALC. 1,5K,FB. (1)
       -
       -
                                        140110, THOOS, WISTON 1110, 011011
                              8121 FORMATHEK, BIGRAVES, 11X,F8.1/46X,5460G1E, 12X,F8.1/
       997
       -
                                      . MEX. ISMNISC (INPUT) .SX.FO.11
       -
                                        00 TO BIS
      1000
                               810 MITE (8,012)
      1001
                              BIZ FORMATI INI ,48%, 34000E LAIGING CEAR HEIGHTS (POLICE) ,25%,
      1000
      1003
                                      1 100- LOS **)
      1004
                                       LIGHTE HE . BILL INTOC. MT. IC. MTAIL . MTOIL . OSTRAT . SSTRAT . MTAIL .
      1000
      1000
                                      . METT.MINISC
      1007
                                815 MRITE (6.886) TOTAL
      1000
      1000
                                 COS FORMATCHIO, VSK, SHITOTAL, 12K,FE. 1/ 1
                                       1F (M . |P)016,016,016
      1011
      1012
      1013
                                816 MRITE (6,817)
                                817 FORMATILING, 7K, 280-MAIN LANDING BEAR DESIGN BATAL
      1019
     1415
                                       00 10 MPS
      1016
      1017
                                818 MITE (6.819)
                                BIS FORMATCING, 7K, 29000E LANDING CEAR DESIGN DATAS
     1010
      1010
      1000
                                . (4, 1-4, (1) FFST, (1) FFST, (1) FFST, (1) FFST (1) FFS
     1021
                                      4 SP. 208.0EFLY. YCG.0EFLZ. HCG.0EFLP
      1000
                                SEL FORMAT (104 . NEK . DICES LOW. EX . NAVEA . SX . DOLANETER . NX . THERDING .
      1023
                                    * 3K,SHTORSIGNAL/ SOX,WEGAD,SK,THISO IN1,7K,SHTO,7K,
                                    . MORDILUS, NX, MORDILUS/ NEX, SICONDITION, I EX, SITHICIDESS. SX,
     100
     1005
                                    * BOF.SK.BOF/ SIX.BM*, ISK, SWAITO, SX, TWUPTURE, 4X, TWUPTURE//
     1006
                                    . ISK, 1940UTER CYLINDER, ISK, 3470P, IBX, I2, 3F12.2, F12.0, F11.0/
     1027
                                     * 38K,00100LE,7K,12,3F12.2,F12.0,F11.0/
     1000
                                    * THE . COMOTTON . 74. 12. 2512. 2.512. 3.511. 3/
     1000
                                    . ISK, TOPISTON ISO PCT OF LENGTH FROM MLEY, 4K, 18, #18.8, F18.0.
                                    . FIL.S/// IZX, PAPISTON DIMETER (INCIES), F7.2,
                                    . SK. 24CS - SCLON TRUNION POINT, 18K,FS. 1/
     1031
     1032
                                                         ISK, SHUFT BEFLECTION (INDES), F7.2.
     1833
                                    . SI, NEICS - BUTBOARD (INSOARD) FROM TRANSON POINT,FS.1/
     1031
                                    . IEX. PHO ICE OFFICETION (INDIES) .F7.2.
     1035
                                     . GK.37NCS - AFT (FORMARD) FROM TRUNION POINT, SX.FS.1/
     1636
                                     . IEX, EMMOLE OF THIST (RADIANS), F7.4/
     1837
                            C
     1830
                                      IF INTRIPISTON, $704, $703
     1030
     1016
                              5763 MRITE (6,5762)
     1801
                              S702 FORMATION .
     1012
                                    . VEN. JOH .. SESION LOAD CONDITION INDICATORS/
                                    . 474,190746-077 161047,34,144,40110 161047/
     10-3
                                    . 20K-04THD POINT, 16X, 11-2, 14X, 3H(6/29K, 746PH) UP, 16K, 116, 14X, 2480/
     184
     1045
                                    . SEX. | INSPIRED BACK, 19X, 116, 19X, 2022/25X, | INSPIRED ROLL, 19X, 116.
                                    * 198.869/ 200,13001/T LMONG.11X,846.19X,8466/
     1046
    1017
                                    . SEK. SIMPREMEETRICAL BRAKING, DK. BHZ. 14X, DEGO.
     1010
                                    . SEK, GATGHING, 16X, SHI'S/29K, THTURNING, 17X, 2HIS// SX,
     1010
                                    . SHI IF THE BESIGN LOAD CONDITION INDICATORS ARE ALL 0, THE BESI
                                     -ON LOADS HERE GIVEN IN THE INPUT DATALL
    1000
    1061
     1002
                              5704 IF (MTRIP) 10.10.20
    1053
    1000
                                 IS FOATINED . TOTAL
    1006
                                      FBATINE! - MINE. - MITT - MINK
    1806
                                      FBAT (93) . MTC . MTIC . MTANL . MTOIL . DETRUT . SETTENT . BOOMT
                                     FRAT (44) - MTH(SC + 0(10))
    1657
    1000
                                     FBAT(46) - 8(92)
     1900
                                      60 10 30
     1000
                           c
    1051
                                80 FBAT (16) - 1014L
                                     FRATISTI - MINEL . MITT
    1683
                                     FRATINGS - MITC - MITC - MITAL - MITOSL - SETTING - SETTING
    1800
                                     FRATISCI - MINISC
```

```
81/27/7s
             HOUT LISTING
                                               MARIEN CHAT ET - DEEP LABORS CAR HEULE
 CATO NO
               ....
                                            COMPANY
                                                                             ****
                   FBAT($0) + 0($3)
   1005
   1005
   1057
                            RETURN FOR AUX TRIP IFOUT - 0
   1000
                 30 IF (MTRIP10000,5205.6000
   1000
   1070
               5265 IF (01621) 5245,5245,5266
   1871
   1070
               SEVS CONTINUE
   1073
   1070
               MIT WITE IS, MESTALLIT
               $200 FORMATCHIL, 1811, 11HTAIL METONT, FB. 1,761, 18H** LOST ***//1
   1075
   1078
   1077
                   MISE 16,57021
   1670
   1070
                   PRATITION - TAILINT
   1000
                   FBAT (97) - 0.0
                   FRATING! - 0.0
   1001
                   FBAT(148) - 0.0
   1605
   1003
                   FBAT(50) - 9(53)
  100%
                   00 10 0000
   1000
                            TET UP DATA FOR ALK TRIP
               ---
  1007
  1000
                   WITT-TIME
  1000
                   MINE WEELA
  1000
  1001
                   00 5100 P-1.5
  1002
               $100 FLIGHTHIN: BIN-30: * D(01)
  1003
  100
                   TOTLAG-0(81)
  1005
                   BFACT - (TOTLAS / LTOTLAS - FLASHHEITHEZ
                   ECCET-010+1
  1007
                   BD,118-0.0049(87)
  1000
                   60110-0(67)
  1100
                   BD.14-0(0+)
                   MED 5-0(EL)
  1191
  1100
                   STRUTS-1.0
  1163
                   MTL1 - 01611
                   MIGRI-0(60)
  110
  1105
  1105
                           IS AUX GEAR PISTON DIAPETER LOADED
                   W 19183) 15183,5189,5183
  1167
  1100
             c
                           AR CEAR PISTON DIMETER
  1100
                  ---
  1110
              5163 EP -01631
  1111
  1118
  1113
                           SET UP LOSS MAEX AND TRIP COUNT
             E
  1119
              $466 MR1P-1
  1115
             c
  1116
                   - 91701
                   - 91711
  1117
  1110
                  9579AT - 0.0
                   - 0.0
  1119
  1120
                   - 0.0
  1121
             C
  1142
                   #8LE(1) - 0:00) * .017-6323
  1123
                   ##LEIBI - 0.0
                  COSTIC - COSTANDLETTI
  118
  1186
                   MIN . . .
  1186
             c
  1127
                  00 TO 1070
  1180
  1150
  1120
  1131
  112
             & strettt.
                          1125
                                 DESIGNATION LAD
  1130
             113
```

```
83/27/7s
             HOUT LISTING
                                              AUTOFLOW CHART SET - SHEEP LANGING BEAR HODILE
 CATO NO
   1126
                  SUSPROUTING LOSPIX, Y, XP, YP)
                                                                        L6320010
   1137
   1130
                  OHENSION X131, Y131, V(9)
   1130
   1150
                  VIII-39-XIII
   1191
                  V(2)-10-1(2)
   1142
                  VI31-19-XI31
  1193
                  A(41--A(1)+A(5)
  1199
                  WS1--W11+W131
  1146
                  M81--A151-A131
  1196
                                                                      L6370140
  1197
                  V(7) -V(2)/V(4)-V(3)/V(5)
  1110
                  AIST -ALTINAIATANISTANIST
  1190
                  VIST -VITT/VIST-VIST/VIST
  1150
  1151
                 W . V(8)*Y(3) . V(7)*Y(1) - V(8)*Y(2)
 1152
 1153
                                                                      L6370330
 1194
                                                                      L6370340
 1195
            1196
 1157
                               SURBOUTINE LOADS
            1150
 1190
 1160
                SURROUTINE LOADSICSV,CSFA,CSL,VF,DF,SF,ANLOAD,PLOAD
 1161
 1162
                RLOW - 145-12 + GF-12 + SF-121-1.5
 1163
           c
 1104
                CRV - W/RL040
 1105
                CWA - 07 /RL040
1105
                CR . # /R.040
1167
1100
                ANS + ACOSTAMINICOSVICEV + CSFA-CRFA + CSL-CRL , 1.81)
1100
1170
                MLOND . RLOND . COS(MG)
1171
               PLO40 - RLO40 - SIN(AND)
1172
           c
1173
               ETURN
1174
               DO
```